These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34377994)

  • 1. An optogenetic proximity labeling approach to probe the composition of inducible biomolecular condensates in cultured cells.
    Alghoul E; Basbous J; Constantinou A
    STAR Protoc; 2021 Sep; 2(3):100677. PubMed ID: 34377994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A platform to induce and mature biomolecular condensates using chemicals and light.
    Hernandez-Candia CN; Brady BR; Harrison E; Tucker CL
    Nat Chem Biol; 2024 Apr; 20(4):452-462. PubMed ID: 38191942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to Fabricate Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.
    Repina NA; Johnson HJ; McClave T; Kane RS; Schaffer DV
    STAR Protoc; 2020 Dec; 1(3):100141. PubMed ID: 33377035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions.
    Lee M; Moon HC; Jeong H; Kim DW; Park HY; Shin Y
    Nat Commun; 2024 Apr; 15(1):3216. PubMed ID: 38622120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Squishy to crusty: Biophysics reveal the molecular details of FUS droplet maturation.
    Sohn EJ; Libich DS
    Structure; 2024 Jul; 32(7):854-855. PubMed ID: 38996511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging insights into transcriptional condensates.
    Ryu K; Park G; Cho WK
    Exp Mol Med; 2024 Apr; 56(4):820-826. PubMed ID: 38658705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative photoconversion analysis of internal molecular dynamics in stress granules and other membraneless organelles in live cells.
    Amen T; Kaganovich D
    STAR Protoc; 2020 Dec; 1(3):100217. PubMed ID: 33377110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced surface passivation for high-sensitivity studies of biomolecular condensates.
    Yao RW; Rosen MK
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2403013121. PubMed ID: 38781207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plants use molecular mechanisms mediated by biomolecular condensates to integrate environmental cues with development.
    Field S; Jang GJ; Dean C; Strader LC; Rhee SY
    Plant Cell; 2023 Sep; 35(9):3173-3186. PubMed ID: 36879427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Hydrogel Production in Mammalian Cells to Synthetically Mimic RNA Granules.
    Nakamura H
    Methods Mol Biol; 2021; 2312():253-276. PubMed ID: 34228295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Techniques for Probing Biomolecular Condensates.
    Ibrahim KA; Naidu AS; Miljkovic H; Radenovic A; Yang W
    ACS Nano; 2024 Apr; 18(16):10738-10757. PubMed ID: 38609349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation landscape of biomolecular condensates.
    Shimobayashi SF; Ronceray P; Sanders DW; Haataja MP; Brangwynne CP
    Nature; 2021 Nov; 599(7885):503-506. PubMed ID: 34552246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using fluorescence anisotropy to monitor chaperone dispersal of RNA-binding protein condensates.
    Yoo H; Drummond DA
    STAR Protoc; 2022 Jun; 3(2):101409. PubMed ID: 35600925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.
    Brumbaugh-Reed EH; Aoki K; Toettcher JE
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of RNA-containing compartments by hybridization and proximity labeling in cultured human cells.
    Yap K; Chung TH; Makeyev EV
    STAR Protoc; 2022 Mar; 3(1):101139. PubMed ID: 35128480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proximity labeling protocol to probe proximity interactions in
    Sanchez AD; Feldman JL
    STAR Protoc; 2021 Dec; 2(4):100986. PubMed ID: 34927095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of myo-inositol-binding proteins by using the biotin pull-down strategy in cultured cells.
    Hsu CC; Xu ZG; Lei J; Chen ZZ; Li HY; Lin HK
    STAR Protoc; 2022 Jun; 3(2):101385. PubMed ID: 35600928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.