These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 343781)

  • 1. Evidence for a high proportion of inactive ribosomes in slow-growing yeast cells.
    Waldron C; Jund R; Lacroute F
    Biochem J; 1977 Dec; 168(3):409-15. PubMed ID: 343781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide chain elongation rate and ribosomal activity in Saccharomyces cerevisiae as a function of the growth rate.
    Bonven B; Gulløv K
    Mol Gen Genet; 1979 Feb; 170(2):225-30. PubMed ID: 372763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular content of ribonucleic acid and protein in Saccharomyces cerevisiae as a function of exponential growth rate: calculation of the apparent peptide chain elongation rate.
    Boehlke KW; Friesen JD
    J Bacteriol; 1975 Feb; 121(2):429-33. PubMed ID: 1089627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate.
    Young R; Bremer H
    Biochem J; 1976 Nov; 160(2):185-94. PubMed ID: 795428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
    Riba A; Di Nanni N; Mittal N; Arhné E; Schmidt A; Zavolan M
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15023-15032. PubMed ID: 31292258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acidic ribosomal proteins as regulators of the eukaryotic ribosomal activity.
    Saenz-Robles MT; Remacha M; Vilella MD; Zinker S; Ballesta JP
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):51-5. PubMed ID: 2207168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast.
    Guzikowski AR; Harvey AT; Zhang J; Zhu S; Begovich K; Cohn MH; Wilhelm JE; Zid BM
    RNA Biol; 2022; 19(1):636-649. PubMed ID: 35491906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inefficiency of ribosomes functioning in Escherichia coli growing at moderate rates.
    Koch AL
    J Gen Microbiol; 1980 Jan; 116(1):165-71. PubMed ID: 6988541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased rates of polypeptide chain elongation in placental explants from human diabetics.
    Ilan J; Pierce DR; Hochberg AA; Folman R; Gyves MT
    Proc Natl Acad Sci U S A; 1984 Mar; 81(5):1366-70. PubMed ID: 6584885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-rate-dependent adjustment of ribosome function in the fungus Mucor racemosus.
    Orlowski M
    Biochem J; 1981 May; 196(2):403-10. PubMed ID: 7316986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sec61p is the main ribosome receptor in the endoplasmic reticulum of Saccharomyces cerevisiae.
    Prinz A; Hartmann E; Kalies KU
    Biol Chem; 2000; 381(9-10):1025-9. PubMed ID: 11076036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vivo and in vitro phosphorylation of yeast ribosomal proteins.
    Grankowski N; Gasior E
    Acta Biochim Pol; 1975; 22(1):45-56. PubMed ID: 1093343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast ribosome core particles deficient in acidic proteins L44 and L45 and their activity in reconstitution experiments.
    Paleń E; Jakubowicz T; Gasior E
    Acta Biochim Pol; 1983; 30(3-4):345-53. PubMed ID: 6369851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE; Archer SK; Beilharz TH; Powell D; Preiss T
    Nat Protoc; 2017 Apr; 12(4):697-731. PubMed ID: 28253237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae.
    Ju Q; Warner JR
    Yeast; 1994 Feb; 10(2):151-7. PubMed ID: 8203157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zuotin, a ribosome-associated DnaJ molecular chaperone.
    Yan W; Schilke B; Pfund C; Walter W; Kim S; Craig EA
    EMBO J; 1998 Aug; 17(16):4809-17. PubMed ID: 9707440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of aging on protein synthesis in the yeast Saccharomyces cerevisiae.
    Motizuki M; Tsurugi K
    Mech Ageing Dev; 1992 Jul; 64(3):235-45. PubMed ID: 1405782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Use of gene fusion in the study of the interaction of ribosomal protein L45 with the Saccharomyces cerevisiae ribosome].
    Santana-Román H; Zinker-Ruzal S
    Rev Latinoam Microbiol; 1993; 35(4):415-22. PubMed ID: 8066334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences.
    Pelechano V; Alepuz P
    Nucleic Acids Res; 2017 Jul; 45(12):7326-7338. PubMed ID: 28549188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.