BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34378122)

  • 1. Scalable quorum-based deep neural networks with adversarial learning for automated lung lobe segmentation in fast helical free-breathing CTs.
    Stiehl B; Lauria M; Singhrao K; Goldin J; Barjaktarevic I; Low D; Santhanam A
    Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1775-1784. PubMed ID: 34378122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning.
    Liu J; Wang C; Guo J; Shao J; Xu X; Liu X; Li H; Li W; Yi Z
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):895-904. PubMed ID: 33846890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI lung lobe segmentation in pediatric cystic fibrosis patients using a recurrent neural network trained with publicly accessible CT datasets.
    Pusterla O; Heule R; Santini F; Weikert T; Willers C; Andermatt S; Sandkühler R; Nyilas S; Latzin P; Bieri O; Bauman G
    Magn Reson Med; 2022 Jul; 88(1):391-405. PubMed ID: 35348244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Lung Lobe Segmentation in Volumetric Chest CT with 3D U-Net: Validation with Intra- and Extra-Datasets.
    Park J; Yun J; Kim N; Park B; Cho Y; Park HJ; Song M; Lee M; Seo JB
    J Digit Imaging; 2020 Feb; 33(1):221-230. PubMed ID: 31152273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN.
    Connell M; Xin Y; Gerard SE; Herrmann J; Shah PK; Martin KT; Rezoagli E; Ippolito D; Rajaei J; Baron R; Delvecchio P; Humayun S; Rizi RR; Bellani G; Cereda M
    Methods; 2022 Sep; 205():200-209. PubMed ID: 35817338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity and reliability of masseter muscles segmentation from the transverse sections of Cone-Beam CT scans compared with MRI scans.
    Pan Y; Wang Y; Li G; Chen S; Xu T
    Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):751-759. PubMed ID: 34625872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated major psoas muscle volumetry in computed tomography using machine learning algorithms.
    Duong F; Gadermayr M; Merhof D; Kuhl C; Bruners P; Loosen SH; Roderburg C; Truhn D; Schulze-Hagen MF
    Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):355-361. PubMed ID: 34928445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks.
    Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y
    Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning.
    Wang H; Minnema J; Batenburg KJ; Forouzanfar T; Hu FJ; Wu G
    J Dent Res; 2021 Aug; 100(9):943-949. PubMed ID: 33783247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation.
    Tyagi S; Talbar SN
    Comput Biol Med; 2022 Aug; 147():105781. PubMed ID: 35777084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast interactive medical image segmentation with weakly supervised deep learning method.
    Girum KB; Créhange G; Hussain R; Lalande A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulmonary nodule segmentation with CT sample synthesis using adversarial networks.
    Qin Y; Zheng H; Huang X; Yang J; Zhu YM
    Med Phys; 2019 Mar; 46(3):1218-1229. PubMed ID: 30575046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised Deep Learning for Stroke Lesion Segmentation on Follow-up CT Based on Generative Adversarial Networks.
    van Voorst H; Konduri PR; van Poppel LM; van der Steen W; van der Sluijs PM; Slot EMH; Emmer BJ; van Zwam WH; Roos YBWEM; Majoie CBLM; Zaharchuk G; Caan MWA; Marquering HA; ;
    AJNR Am J Neuroradiol; 2022 Aug; 43(8):1107-1114. PubMed ID: 35902122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting Lungs from CT Images via Deep Convolutional Neural Network Based Segmentation and Two-Pass Contour Refinement.
    Liu C; Pang M
    J Digit Imaging; 2020 Dec; 33(6):1465-1478. PubMed ID: 33057882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks.
    Arafati A; Morisawa D; Avendi MR; Amini MR; Assadi RA; Jafarkhani H; Kheradvar A
    J R Soc Interface; 2020 Aug; 17(169):20200267. PubMed ID: 32811299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.