BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34378335)

  • 21. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME.
    Ramadan Q; Fardous RS; Hazaymeh R; Alshmmari S; Zourob M
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100775. PubMed ID: 34323392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liver microphysiological platforms for drug metabolism applications.
    Kulsharova G; Kurmangaliyeva A
    Cell Prolif; 2021 Sep; 54(9):e13099. PubMed ID: 34291515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry.
    Baudy AR; Otieno MA; Hewitt P; Gan J; Roth A; Keller D; Sura R; Van Vleet TR; Proctor WR
    Lab Chip; 2020 Jan; 20(2):215-225. PubMed ID: 31799979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity.
    Chang SY; Voellinger JL; Van Ness KP; Chapron B; Shaffer RM; Neumann T; White CC; Kavanagh TJ; Kelly EJ; Eaton DL
    Toxicol In Vitro; 2017 Apr; 40():170-183. PubMed ID: 28089783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microphysiological Systems to Assess Nonclinical Toxicity.
    Van Ness KP; Chang SY; Weber EJ; Zumpano D; Eaton DL; Kelly EJ
    Curr Protoc Toxicol; 2017 Aug; 73():14.18.1-14.18.28. PubMed ID: 28777442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle.
    Vernetti L; Gough A; Baetz N; Blutt S; Broughman JR; Brown JA; Foulke-Abel J; Hasan N; In J; Kelly E; Kovbasnjuk O; Repper J; Senutovitch N; Stabb J; Yeung C; Zachos NC; Donowitz M; Estes M; Himmelfarb J; Truskey G; Wikswo JP; Taylor DL
    Sci Rep; 2017 Feb; 7():42296. PubMed ID: 28176881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of the microphysiology systems database for experimental ADME-Tox and disease models.
    Schurdak M; Vernetti L; Bergenthal L; Wolter QK; Shun TY; Karcher S; Taylor DL; Gough A
    Lab Chip; 2020 Apr; 20(8):1472-1492. PubMed ID: 32211684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microphysiological systems: What it takes for community adoption.
    Hargrove-Grimes P; Low LA; Tagle DA
    Exp Biol Med (Maywood); 2021 Jun; 246(12):1435-1446. PubMed ID: 33899539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective.
    Ainslie GR; Davis M; Ewart L; Lieberman LA; Rowlands DJ; Thorley AJ; Yoder G; Ryan AM
    Lab Chip; 2019 Sep; 19(19):3152-3161. PubMed ID: 31469131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Addressing the ADME Challenges of Compound Loss in a PDMS-Based Gut-on-Chip Microphysiological System.
    Carius P; Weinelt FA; Cantow C; Holstein M; Teitelbaum AM; Cui Y
    Pharmaceutics; 2024 Feb; 16(3):. PubMed ID: 38543190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing the power of microphysiological systems for COVID-19 research.
    Kleinstreuer N; Holmes A
    Drug Discov Today; 2021 Nov; 26(11):2496-2501. PubMed ID: 34332095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Research and Development of Microphysiological Systems in Japan Supported by the AMED-MPS Project.
    Ishida S
    Front Toxicol; 2021; 3():657765. PubMed ID: 35295097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplifying the impact of kidney microphysiological systems: predicting renal drug clearance using mechanistic modelling based on reconstructed drug secretion.
    Caetano-Pinto P; Nordell P; Nieskens T; Haughan K; Fenner KS; Stahl SH
    ALTEX; 2023; 40(3):408-424. PubMed ID: 36343109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of microphysiological systems for nonclinical evaluation of cell therapies.
    Candarlioglu P; Delsing L; Gauthier L; Lewis L; Papadopoulos G; Freag M; Chan TS; Homan K; Fellows MD; Pointon A; Kojala K
    ALTEX; 2024 May; ():. PubMed ID: 38746991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-industrial applications of organotypic models.
    Kopanska KS; Rimann M
    ALTEX; 2022; 39(1):155-158. PubMed ID: 35034134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Pharma challenges to adoption of microphysiological system in drug research and development, especially safety assessment].
    Naraoka H
    Nihon Yakurigaku Zasshi; 2023; 158(2):187-192. PubMed ID: 36858504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kidney Organoid and Microphysiological Kidney Chip Models to Accelerate Drug Development and Reduce Animal Testing.
    Chen WY; Evangelista EA; Yang J; Kelly EJ; Yeung CK
    Front Pharmacol; 2021; 12():695920. PubMed ID: 34381363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Building three-dimensional lung models for studying pharmacokinetics of inhaled drugs.
    Barros AS; Costa A; Sarmento B
    Adv Drug Deliv Rev; 2021 Mar; 170():386-395. PubMed ID: 32971227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system.
    Shinohara M; Arakawa H; Oda Y; Shiraki N; Sugiura S; Nishiuchi T; Satoh T; Iino K; Leo S; Kato Y; Araya K; Kawanishi T; Nakatsuji T; Mitsuta M; Inamura K; Goto T; Shinha K; Nihei W; Komori K; Nishikawa M; Kume S; Kato Y; Kanamori T; Sakai Y; Kimura H
    Sci Rep; 2021 Mar; 11(1):5437. PubMed ID: 33686099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods.
    Tsaioun K; Blaauboer BJ; Hartung T
    ALTEX; 2016; 33(4):343-358. PubMed ID: 27806179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.