BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34378335)

  • 41. Relationship between Adsorption and Toxicity of Nephrotoxic Drugs in Microphysiological Systems (MPS).
    Ueno R; Kuninori M; Sumi T; Sadeghian RB; Takata Y; Iguchi A; Tsuda M; Yamashita F; Ichikawa K; Yokokawa R
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leveraging microphysiological systems to address challenges encountered during development of oligonucleotide therapeutics.
    Ramsden D; Belair DG; Agarwal S; Andersson P; Humphreys S; Dalmas DA; Stahl SH; Maclauchlin C; Cichocki JA
    ALTEX; 2022; 39(2):273–296. PubMed ID: 34766620
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microphysiological Systems: A Pathologist's Perspective.
    Sura R; Van Vleet T; Berridge BR
    Vet Pathol; 2020 May; 57(3):358-368. PubMed ID: 32180532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative Systems Pharmacology Approaches Applied to Microphysiological Systems (MPS): Data Interpretation and Multi-MPS Integration.
    Yu J; Cilfone NA; Large EM; Sarkar U; Wishnok JS; Tannenbaum SR; Hughes DJ; Lauffenburger DA; Griffith LG; Stokes CL; Cirit M
    CPT Pharmacometrics Syst Pharmacol; 2015 Oct; 4(10):585-94. PubMed ID: 26535159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Technical aspects of microphysiological systems (MPS) as a promising wet human-in-vivo simulator.
    Kanamori T; Sugiura S; Sakai Y
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):40-42. PubMed ID: 29217459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pumped and pumpless microphysiological systems to study (nano)therapeutics.
    Lee EJ; Krassin ZL; Abaci HE; Mahler GJ; Esch MB
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1911. PubMed ID: 37464464
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advances in microfluidic 3D cell culture for preclinical drug development.
    Russo M; Cejas CM; Pitingolo G
    Prog Mol Biol Transl Sci; 2022; 187(1):163-204. PubMed ID: 35094774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of New Cellular and Microphysiological Systems to Drug Metabolism Optimization and Their Positioning Respective to In Silico Tools.
    Docci L; Parrott N; Krähenbühl S; Fowler S
    SLAS Discov; 2019 Jun; 24(5):523-536. PubMed ID: 30817893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kidney microphysiological models for nephrotoxicity assessment.
    Mahadeo A; Yeung CK; Himmelfarb J; Kelly EJ
    Curr Opin Toxicol; 2022 Jun; 30():. PubMed ID: 35495549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Academic User View: Organ-on-a-Chip Technology.
    Busek M; Aizenshtadt A; Amirola-Martinez M; Delon L; Krauss S
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organs-on-a-Chip.
    Low LA; Sutherland M; Lumelsky N; Selimovic S; Lundberg MS; Tagle DA
    Adv Exp Med Biol; 2020; 1230():27-42. PubMed ID: 32285363
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.
    Marx U; Andersson TB; Bahinski A; Beilmann M; Beken S; Cassee FR; Cirit M; Daneshian M; Fitzpatrick S; Frey O; Gaertner C; Giese C; Griffith L; Hartung T; Heringa MB; Hoeng J; de Jong WH; Kojima H; Kuehnl J; Leist M; Luch A; Maschmeyer I; Sakharov D; Sips AJ; Steger-Hartmann T; Tagle DA; Tonevitsky A; Tralau T; Tsyb S; van de Stolpe A; Vandebriel R; Vulto P; Wang J; Wiest J; Rodenburg M; Roth A
    ALTEX; 2016; 33(3):272-321. PubMed ID: 27180100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane transporters in drug development.
    ; Giacomini KM; Huang SM; Tweedie DJ; Benet LZ; Brouwer KL; Chu X; Dahlin A; Evers R; Fischer V; Hillgren KM; Hoffmaster KA; Ishikawa T; Keppler D; Kim RB; Lee CA; Niemi M; Polli JW; Sugiyama Y; Swaan PW; Ware JA; Wright SH; Yee SW; Zamek-Gliszczynski MJ; Zhang L
    Nat Rev Drug Discov; 2010 Mar; 9(3):215-36. PubMed ID: 20190787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges.
    Irrechukwu O; Yeager R; David R; Ekert J; Saravanakumar A; Choi CK
    ALTEX; 2023; 40(3):485-518. PubMed ID: 36648096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.
    Lacombe J; Soldevila M; Zenhausern F
    Prog Mol Biol Transl Sci; 2022; 187(1):41-91. PubMed ID: 35094781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity.
    Amacher DE
    Toxicol Appl Pharmacol; 2010 May; 245(1):134-42. PubMed ID: 20219512
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biofabrication of vasculature in microphysiological models of bone.
    Whelan IT; Moeendarbary E; Hoey DA; Kelly DJ
    Biofabrication; 2021 Jul; 13(3):. PubMed ID: 34034238
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.