These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34378335)

  • 81. Microphysiological System Design: Simplicity Is Elegance.
    Hinman SS; Kim R; Wang Y; Phillips KS; Attayek PJ; Allbritton NL
    Curr Opin Biomed Eng; 2020 Mar; 13():94-102. PubMed ID: 32095672
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan].
    Kimura H
    Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Metabolism and Excretion of Therapeutic Peptides: Current Industry Practices, Perspectives, and Recommendations.
    He MM; Zhu SX; Cannon JR; Christensen JK; Duggal R; Gunduz M; Hilgendorf C; Hughes A; Kekessie I; Kullmann M; Leung D; Terjung C; Wang K; Wesche F
    Drug Metab Dispos; 2023 Nov; 51(11):1436-1450. PubMed ID: 37591731
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Meeting report: oligonucleotide ADME workshop.
    Hood S; Kenworthy D; Christensen JK
    Xenobiotica; 2022 Aug; 52(8):957-961. PubMed ID: 36093882
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The National Institutes of Health Microphysiological Systems Program focuses on a critical challenge in the drug discovery pipeline.
    Sutherland ML; Fabre KM; Tagle DA
    Stem Cell Res Ther; 2013; 4 Suppl 1(Suppl 1):I1. PubMed ID: 24565163
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip.
    Anderson WA; Bosak A; Hogberg HT; Hartung T; Moore MJ
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):191-206. PubMed ID: 33438114
    [TBL] [Abstract][Full Text] [Related]  

  • 87. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery.
    Planz V; Lehr CM; Windbergs M
    J Control Release; 2016 Nov; 242():89-104. PubMed ID: 27612408
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity.
    Shen JX; Youhanna S; Zandi Shafagh R; Kele J; Lauschke VM
    Chem Res Toxicol; 2020 Jan; 33(1):38-60. PubMed ID: 31576743
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications.
    Zhang S; Xu G; Wu J; Liu X; Fan Y; Chen J; Wallace G; Gu Q
    Small Methods; 2024 Jan; 8(1):e2300685. PubMed ID: 37798902
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Organ-on-a-disc: A platform technology for the centrifugal generation and culture of microphysiological 3D cell constructs amenable for automation and parallelization.
    Schneider S; Erdemann F; Schneider O; Hutschalik T; Loskill P
    APL Bioeng; 2020 Dec; 4(4):046101. PubMed ID: 33062909
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The Influence of Intestinal Tract and Probiotics on the Fate of Orally Administered Drugs.
    Stojančević M; Bojić G; Salami HA; Mikov M
    Curr Issues Mol Biol; 2014; 16():55-68. PubMed ID: 24002548
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Application of Immunocompetent Microphysiological Systems in Drug Development: Current Perspective and Recommendations.
    Wang X; Kopec AK; Collinge M; David R; Grant C; Hardwick RN; Navratil A; Patel N; Rowan W; Marshall N
    ALTEX; 2022 Aug; 40(2):314–336. PubMed ID: 36044561
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Building blocks of microphysiological system to model physiology and pathophysiology of human heart.
    Vuorenpää H; Björninen M; Välimäki H; Ahola A; Kroon M; Honkamäki L; Koivumäki JT; Pekkanen-Mattila M
    Front Physiol; 2023; 14():1213959. PubMed ID: 37485060
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Emerging Role of Organ-on-a-Chip Technologies in Quantitative Clinical Pharmacology Evaluation.
    Isoherranen N; Madabushi R; Huang SM
    Clin Transl Sci; 2019 Mar; 12(2):113-121. PubMed ID: 30740886
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research.
    Low LA; Tagle DA
    Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585
    [TBL] [Abstract][Full Text] [Related]  

  • 97. An Intestine/Liver Microphysiological System for Drug Pharmacokinetic and Toxicological Assessment.
    Marin TM; Indolfo NC; Rocco SA; de Carvalho M; Dias MM; Vasconcelos Bento GI; Bortot LO; Schuck DC; Lorencini M; Pagani E
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33346185
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The vascular niche in next generation microphysiological systems.
    Ewald ML; Chen YH; Lee AP; Hughes CCW
    Lab Chip; 2021 Sep; 21(17):3244-3262. PubMed ID: 34396383
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Preclinical pharmacokinetics: an approach towards safer and efficacious drugs.
    Singh SS
    Curr Drug Metab; 2006 Feb; 7(2):165-82. PubMed ID: 16472106
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.