These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34378372)

  • 61. Highly Solvating Electrolytes for Lithium-Sulfur Batteries.
    Gupta A; Bhargav A; Manthiram A
    Adv Energy Mater; 2019 Feb; 9(6):. PubMed ID: 31807123
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pushing Lithium-Sulfur Batteries towards Practical Working Conditions through a Cathode-Electrolyte Synergy.
    Zhao C; Daali A; Hwang I; Li T; Huang X; Robertson D; Yang Z; Trask S; Xu W; Sun CJ; Xu GL; Amine K
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202203466. PubMed ID: 35466514
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries.
    Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X
    Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Suppressing Polysulfide Dissolution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium-Sulfur Batteries.
    Yun JH; Kim JH; Kim DK; Lee HW
    Nano Lett; 2018 Jan; 18(1):475-481. PubMed ID: 29235876
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 3D Printing of a V
    Cai J; Jin J; Fan Z; Li C; Shi Z; Sun J; Liu Z
    Adv Mater; 2020 Dec; 32(50):e2005967. PubMed ID: 33179368
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries.
    Zhao H; Tian B; Su C; Li Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7171-7177. PubMed ID: 33528984
    [TBL] [Abstract][Full Text] [Related]  

  • 67. N-Doped Hierarchically Porous CNT@C Membranes for Accelerating Polysulfide Redox Conversion for High-Energy Lithium-Sulfur Batteries.
    Dai Y; Zheng W; Li X; Liu A; Zhang W; Jiang X; Wu X; Tao J; He G
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2521-2529. PubMed ID: 33423461
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Understanding of Crucial Factors for Improving the Energy Density of Lithium-Sulfur Pouch Cells.
    Leonet O; Doñoro Á; Fernández-Barquín A; Kvasha A; Urdampilleta I; Blázquez JA
    Front Chem; 2022; 10():888750. PubMed ID: 35586266
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.
    Eshetu GG; Judez X; Li C; Bondarchuk O; Rodriguez-Martinez LM; Zhang H; Armand M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15368-15372. PubMed ID: 28994228
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li-S Batteries.
    He M; Li X; Holmes NG; Li R; Wang J; Yin G; Zuo P; Sun X
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38296-38304. PubMed ID: 34370436
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li
    Fan S; Huang S; Pam ME; Chen S; Wu Q; Hu J; Wang Y; Ang LK; Yan C; Shi Y; Yang HY
    Small; 2019 Dec; 15(51):e1906132. PubMed ID: 31756047
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.
    Tao T; Lu S; Fan Y; Lei W; Huang S; Chen Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28626966
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Engineering Fe and V Coordinated Bimetallic Oxide Nanocatalyst Enables Enhanced Polysulfides Mediation for High Energy Density Li-S Battery.
    Cheng H; Zhang S; Li S; Gao C; Zhao S; Lu Y; Wang M
    Small; 2022 Jul; 18(28):e2202557. PubMed ID: 35718880
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electron and Ion Co-Conductive Catalyst Achieving Instant Transformation of Lithium Polysulfide towards Li
    Hao X; Ma J; Cheng X; Zhong G; Yang JL; Huang L; Ling H; Lai C; Lv W; Kang F; Sun X; He YB
    Adv Mater; 2021 Dec; 33(52):e2105362. PubMed ID: 34658075
    [TBL] [Abstract][Full Text] [Related]  

  • 75. To Promote the Catalytic Conversion of Polysulfides Using Ni-B Alloy Nanoparticles on Carbon Nanotube Microspheres under High Sulfur Loading and a Lean Electrolyte.
    Wang ZY; Wang HM; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2021 May; 13(17):20222-20232. PubMed ID: 33878274
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries.
    Zhang L; Wan F; Wang X; Cao H; Dai X; Niu Z; Wang Y; Chen J
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5594-5602. PubMed ID: 29357218
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Isomeric Organodithiol Additives for Improving Interfacial Chemistry in Rechargeable Li-S Batteries.
    Lian J; Guo W; Fu Y
    J Am Chem Soc; 2021 Jul; 143(29):11063-11071. PubMed ID: 34264661
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synergy between Interconnected Porous Carbon-Sulfur Cathode and Metallic MgB
    Garapati MS; Sundara R
    ACS Omega; 2020 Sep; 5(35):22379-22388. PubMed ID: 32923795
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 3D Asymmetric Bilayer Garnet-Hybridized High-Energy-Density Lithium-Sulfur Batteries.
    Shi C; Hamann T; Takeuchi S; Alexander GV; Nolan AM; Limpert M; Fu Z; O'Neill J; Godbey G; Dura JA; Wachsman ED
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):751-760. PubMed ID: 36580372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.