These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 343786)

  • 1. Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite.
    Pohl LR; Nelson SD; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(4):491-6. PubMed ID: 343786
    [No Abstract]   [Full Text] [Related]  

  • 2. Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes.
    Pohl LR; Krishna G
    Biochem Pharmacol; 1978 Feb; 27(3):335-41. PubMed ID: 619915
    [No Abstract]   [Full Text] [Related]  

  • 3. [3H]chloramphenicol metabolism in human volunteer: oxamic acid as a new major metabolite.
    Corpet DE; Bories GF
    Drug Metab Dispos; 1987; 15(6):925-7. PubMed ID: 2893723
    [No Abstract]   [Full Text] [Related]  

  • 4. Chloramphenicol oxamylethanolamine as an end product of chloramphenicol metabolism in rat and humans: evidence for the formation of a phospholipid adduct.
    Cravedi JP; Perdu-Durand E; Baradat M; Alary J; Debrauwer L; Bories G
    Chem Res Toxicol; 1995; 8(5):642-8. PubMed ID: 7548746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of chloramphenicol oxamic acid as a new major metabolite of chloramphenicol in rats.
    Wal JM; Peleran JC; Bories GF
    FEBS Lett; 1980 Sep; 119(1):38-42. PubMed ID: 7428925
    [No Abstract]   [Full Text] [Related]  

  • 8. The identification and characterisation of chloramphenicol-aldehyde, a new human metabolite of chloramphenicol.
    Holt DE
    Eur J Drug Metab Pharmacokinet; 1995; 20(1):35-42. PubMed ID: 7588992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid.
    Koch RL; Goldman P
    J Pharmacol Exp Ther; 1979 Mar; 208(3):406-10. PubMed ID: 430360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of two chloramphenicol glucuronides from the in vitro glucuronidation of chloramphenicol in human liver microsomes.
    Chen M; Howe D; Leduc B; Kerr S; Williams DA
    Xenobiotica; 2007 Sep; 37(9):954-71. PubMed ID: 17896323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic reduction of chloramphenicol and nitrosochloramphenicol by rat liver microsomal preparations.
    Lim LO; Yunis AA
    Pharmacology; 1983; 27(1):58-64. PubMed ID: 6611649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver.
    Martin JL; Gross BJ; Morris P; Pohl LR
    Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide HCl].
    Prough RA; Coomes MW; Cummings SW; Wiebkin P
    Adv Exp Med Biol; 1981; 136 Pt B():983-96. PubMed ID: 7046391
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of 4-(3-cyclohexylpropionyl)-1-(2-ethoxyphenyl) piperazine (D-16120) by rat liver microsomes.
    Caputo O; Rocco F; Grosa G
    Eur J Drug Metab Pharmacokinet; 1994; 19(4):303-10. PubMed ID: 7737231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of dicumarol-14 C by rat-liver microsomes.
    Lee FH; Conway WD
    Pharmacol Res Commun; 1976 Oct; 8(5):469-75. PubMed ID: 68481
    [No Abstract]   [Full Text] [Related]  

  • 16. Formation and disposition of nitrosochloramphenicol in rat liver.
    Ascherl M; Eyer P; Kampffmeyer H
    Biochem Pharmacol; 1985 Oct; 34(20):3755-63. PubMed ID: 4052115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for new metabolic pathways of chloramphenicol in the duck.
    Cravedi JP; Baradat M; Debrauwer L; Alary J; Tulliez J; Bories G
    Drug Metab Dispos; 1994; 22(4):578-83. PubMed ID: 7956733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation and Metabolic Profile of Limonin in Rat Liver Microsomes, Bile, and Urine by High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry.
    Liu S; Dai G; Sun L; Sun B; Chen D; Zhu L; Wang Y; Zhang L; Chen P; Zhou D; Ju W
    J Agric Food Chem; 2018 Oct; 66(40):10388-10393. PubMed ID: 30260225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative metabolic profiling of chloramphenicol by isolated hepatocytes from rat and trout (Oncorhynchus mykiss).
    Cravedi JP; Baradat M
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 100(3):649-52. PubMed ID: 1687566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Epoxide-diol" metabolic pathway of 5H-dibenzo[a,d]cycloheptene in the rat. Studies by gas chromatography and mass spectrometry.
    Pantarotto C; Cappellini L; Negrini P; Frigerio A
    J Chromatogr; 1977 Jan; 131():430-6. PubMed ID: 853103
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.