These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34378941)

  • 1. Mapping between Surface Wettability, Droplets, and Their Impacting Behaviors.
    Zhao C; Montazeri K; Shao B; Won Y
    Langmuir; 2021 Aug; 37(33):9964-9972. PubMed ID: 34378941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scaling number reveals droplet dynamics on vibratory surfaces.
    Song M; Zhao H; Wang T; Wang S; Wan J; Qin X; Wang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2414-2420. PubMed ID: 34753623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum Spreading and Rebound of a Droplet Impacting onto a Spherical Surface at Low Weber Numbers.
    Bordbar A; Taassob A; Khojasteh D; Marengo M; Kamali R
    Langmuir; 2018 May; 34(17):5149-5158. PubMed ID: 29633848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ricocheting Droplets Moving on Super-Repellent Surfaces.
    Pan S; Guo R; Richardson JJ; Berry JD; Besford QA; Björnmalm M; Yun G; Wu R; Lin Z; Zhong QZ; Zhou J; Sun Q; Li J; Lu Y; Dong Z; Banks MK; Xu W; Jiang J; Jiang L; Caruso F
    Adv Sci (Weinh); 2019 Nov; 6(21):1901846. PubMed ID: 31728297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading Behavior and Wetting Characteristics of Anionic Surfactant Droplets Impacting Bituminous Coal.
    Han F; Liu M; Hu F; Zhao Y; Peng Y
    ACS Omega; 2022 Dec; 7(50):46241-46249. PubMed ID: 36570233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral motion of a droplet impacting on a wettability-patterned surface: numerical and theoretical studies.
    Zhang T; Wu J; Lin X
    Soft Matter; 2021 Jan; 17(3):724-737. PubMed ID: 33220671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium droplet shapes on chemically patterned surfaces: theoretical calculation, phase-field simulation, and experiments.
    Wu Y; Kuzina M; Wang F; Reischl M; Selzer M; Nestler B; Levkin PA
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1077-1086. PubMed ID: 34487930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet impact on pillar-arrayed non-wetting surfaces.
    Wang LZ; Zhou A; Zhou JZ; Chen L; Yu YS
    Soft Matter; 2021 Jun; 17(24):5932-5940. PubMed ID: 34041518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypergyrating Droplets Generated on a Selective Laser-Textured Heterogeneous Wettability Surface.
    Pan Q; Sun B; Liu W; Xue W; Cao Y
    Langmuir; 2020 Jul; 36(28):8123-8128. PubMed ID: 32564607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spreading, Breakup, and Rebound Behaviors of Compound Droplets Impacting on Microstructured Substrates.
    Farokhirad S; Solanky P; Shad MM
    Langmuir; 2023 Mar; 39(10):3645-3655. PubMed ID: 36853952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional Transportation of Impacting Droplets on Wettability-Controlled Surfaces.
    Chu F; Luo J; Hao C; Zhang J; Wu X; Wen D
    Langmuir; 2020 Jun; 36(21):5855-5862. PubMed ID: 32390439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic behaviors of droplet impact and spreading: water on five different substrates.
    Wang MJ; Lin FH; Hung YL; Lin SY
    Langmuir; 2009 Jun; 25(12):6772-80. PubMed ID: 19379008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacting Water Droplets Can Alleviate Dust from Slanted Hydrophobic Surfaces.
    Yilbas BS; Abubakar AA; Ali H; Al-Sharafi A; Sahin AZ; Sunar M; Al-Qahtani H
    Langmuir; 2021 Apr; 37(14):4355-4369. PubMed ID: 33789039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.