These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34379385)

  • 21. Multifunctional Molecule Assists Passivate Method to Simultaneously Improve the Efficiency and Stability of Perovskite Solar Cells.
    Meng X; Shen B; Sun Q; Deng J; Hu D; Kang B; Silva SRP; Wang X; Wang L
    ChemSusChem; 2023 Apr; 16(7):e202202092. PubMed ID: 36629755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taurine as a powerful passivator of perovskite layer for efficient and stable perovskite solar cells.
    Hou X; Yuan Z; Liu J; Ma H; Yu F
    RSC Adv; 2023 Jun; 13(25):16872-16879. PubMed ID: 37283868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Durable Defect Passivation of the Grain Surface in Perovskite Solar Cells with π-Conjugated Sulfamic Acid Additives.
    Cao K; Huang Y; Ge M; Huang F; Shi W; Wu Y; Cheng Y; Qian J; Liu L; Chen S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26013-26022. PubMed ID: 34048215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of Interface Passivation of Perovskite Layer.
    Wu Y; Wang D; Liu J; Cai H
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells.
    Liu Z; Cao F; Wang M; Wang M; Li L
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):4161-4167. PubMed ID: 31867802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the Hammett substituent constant of
    Hong KN; Lee SU; Zhang C; Cho SH; Park NG
    Nanoscale; 2024 Jul; ():. PubMed ID: 39011606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots.
    Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr
    Yang S; Wang L; Gao L; Cao J; Han Q; Yu F; Kamata Y; Zhang C; Fan M; Wei G; Ma T
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13931-13940. PubMed ID: 32119775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation.
    Thambidurai M; Omer MI; Shini F; Dewi HA; Jamaludin NF; Koh TM; Tang X; Mathews N; Dang C
    ChemSusChem; 2022 Apr; 15(8):e202102189. PubMed ID: 35289479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Universal Surface Passivation of Organic-Inorganic Halide Perovskite Films by Tetraoctylammonium Chloride for High-Performance and Stable Perovskite Solar Cells.
    Abate SY; Zhang Q; Qi Y; Nash J; Gollinger K; Zhu X; Han F; Pradhan N; Dai Q
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28044-28059. PubMed ID: 35679233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-cost and easily prepared interface layer towards efficient and negligible hysteresis perovskite solar cells.
    Wu W; Han W; Deng Y; Ren G; Liu C; Guo W
    J Colloid Interface Sci; 2022 Jul; 617():745-751. PubMed ID: 35316787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport.
    Xiao K; Cui C; Wang P; Lin P; Qiang Y; Xu L; Xie J; Yang Z; Zhu X; Yu X; Yang D
    Nanotechnology; 2018 Feb; 29(6):065401. PubMed ID: 29219844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bi(trifluoromethyl) Benzoic Acid-Assisted Shallow Defect Passivation for Perovskite Solar Cells with an Efficiency Exceeding 21.
    Ding X; Wang H; Miao Y; Chen C; Zhai M; Yang C; Wang B; Tian Y; Cheng M
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3930-3938. PubMed ID: 35020343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigating
    Chen Y; Wang K; Qi H; Zhang Y; Wang T; Tong Y; Wang H
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41086-41094. PubMed ID: 36044379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial modification towards highly efficient and stable perovskite solar cells.
    Wang Y; Zhang Z; Tao M; Lan Y; Li M; Tian Y; Song Y
    Nanoscale; 2020 Sep; 12(36):18563-18575. PubMed ID: 32970092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perovskite interface defect passivation with poly(ethylene oxide) for improving power conversion efficiency of the inverted solar cells.
    Duan C; Zhang X; Du Z; Chen J; El-Bashar R; Obayya SSA; Hameed M; Dai J
    Opt Express; 2023 Jun; 31(12):20364-20376. PubMed ID: 37381432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interfacial Modification in Organic and Perovskite Solar Cells.
    Bi S; Leng X; Li Y; Zheng Z; Zhang X; Zhang Y; Zhou H
    Adv Mater; 2019 Nov; 31(45):e1805708. PubMed ID: 30600552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronous Surface Reconstruction and Defect Passivation for High-Performance Inorganic Perovskite Solar Cells.
    Zhang H; Tian Q; Gu X; Zhang S; Wang Z; Zuo X; Liu Y; Zhao K; Liu SF
    Small; 2022 Aug; 18(33):e2202690. PubMed ID: 35859526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion-Diffusion Management Enables All-Interface Defect Passivation of Perovskite Solar Cells.
    Shen L; Song P; Zheng L; Wang L; Zhang X; Liu K; Liang Y; Tian W; Luo Y; Qiu J; Tian C; Xie L; Wei Z
    Adv Mater; 2023 Sep; 35(39):e2301624. PubMed ID: 37358373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.