These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 34379540)

  • 41. Course of motor recovery following ventrolateral spinal cord injury in the rat.
    Webb AA; Muir GD
    Behav Brain Res; 2004 Nov; 155(1):55-65. PubMed ID: 15325779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robot applied stance loading increases hindlimb muscle mass and stepping kinetics in a rat model of spinal cord injury.
    Nessler JA; Moustafa-Bayoumi M; Soto D; Duhon JE; Schmitt R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4145-8. PubMed ID: 22255252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury.
    Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C
    Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A neuroprosthesis for control of seated balance after spinal cord injury.
    Audu ML; Lombardo LM; Schnellenberger JR; Foglyano KM; Miller ME; Triolo RJ
    J Neuroeng Rehabil; 2015 Jan; 12():8. PubMed ID: 25608888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.
    Li Y; Alam M; Guo S; Ting KH; He J
    J Neuroeng Rehabil; 2014 Jul; 11():107. PubMed ID: 24990580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of cortical reorganization on the effect of 5-HT pharmacotherapy for spinal cord injury.
    Moxon KA; Kao T; Shumsky JS
    Exp Neurol; 2013 Feb; 240():17-27. PubMed ID: 23159333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recovery of locomotion in cats after severe contusion of the low thoracic spinal cord.
    Delivet-Mongrain H; Dea M; Gossard JP; Rossignol S
    J Neurophysiol; 2020 Apr; 123(4):1504-1525. PubMed ID: 32101502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat.
    Kao T; Shumsky JS; Murray M; Moxon KA
    J Neurosci; 2009 Jun; 29(23):7549-57. PubMed ID: 19515923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of the reorganization in bilateral motor and sensory cortices after spinal cord hemisection in mice.
    Deng J; Xie H; Chen Y; Peng Z; Zhao J; Zhou Y; Chen C; Zhang K
    Neuroreport; 2021 Sep; 32(13):1082-1090. PubMed ID: 34173791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid functional recovery after spinal cord injury in young rats.
    Brown KM; Wolfe BB; Wrathall JR
    J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel spatiotemporal analysis of gait changes in body weight supported treadmill trained rats following cervical spinal cord injury.
    Neckel ND
    J Neuroeng Rehabil; 2017 Sep; 14(1):96. PubMed ID: 28903771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activity of red nucleus neurons in the cat during postural corrections.
    Zelenin PV; Beloozerova IN; Sirota MG; Orlovsky GN; Deliagina TG
    J Neurosci; 2010 Oct; 30(43):14533-42. PubMed ID: 20980611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates.
    Soblosky JS; Matthews MA; Davidson JF; Tabor SL; Carey ME
    Behav Brain Res; 1996 Sep; 79(1-2):79-92. PubMed ID: 8883819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations.
    Giszter SF; Davies MR; Graziani V
    J Neurophysiol; 2007 Apr; 97(4):2663-75. PubMed ID: 17287444
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats.
    Manohar A; Foffani G; Ganzer PD; Bethea JR; Moxon KA
    Elife; 2017 Jun; 6():. PubMed ID: 28661400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fetal transplants rescue axial muscle representations in M1 cortex of neonatally transected rats that develop weight support.
    Giszter SF; Kargo WJ; Davies M; Shibayama M
    J Neurophysiol; 1998 Dec; 80(6):3021-30. PubMed ID: 9862903
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facilitation of postural limb reflexes with epidural stimulation in spinal rabbits.
    Musienko PE; Zelenin PV; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2010 Feb; 103(2):1080-92. PubMed ID: 20018835
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.
    Liu JL; Wang S; Chen ZH; Wu RJ; Yu HY; Yang SB; Xu J; Guo YN; Ding Y; Li G; Zeng X; Ma YH; Gong YL; Wu CR; Zhang LX; Zeng YS; Lai BQ
    Front Immunol; 2023; 14():1153516. PubMed ID: 37388732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury.
    Diener PS; Bregman BS
    J Neurosci; 1998 Jan; 18(2):763-78. PubMed ID: 9425018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.