These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34379622)

  • 1. Wing structure and neural encoding jointly determine sensing strategies in insect flight.
    Weber AI; Daniel TL; Brunton BW
    PLoS Comput Biol; 2021 Aug; 17(8):e1009195. PubMed ID: 34379622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data.
    Mohren TL; Daniel TL; Brunton SL; Brunton BW
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10564-10569. PubMed ID: 30213850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural evidence supports a dual sensory-motor role for insect wings.
    Pratt B; Deora T; Mohren T; Daniel T
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonuniform structural properties of wings confer sensing advantages.
    Weber AI; Babaei M; Mamo A; Brunton BW; Daniel TL; Bergbreiter S
    J R Soc Interface; 2023 Mar; 20(200):20220765. PubMed ID: 36946090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2989-97. PubMed ID: 12878667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.
    van Veen WG; van Leeuwen JL; Muijres FT
    J R Soc Interface; 2019 Jun; 16(155):20190118. PubMed ID: 31213176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational control: A hidden stabilization mechanism in insect flight.
    Taha HE; Kiani M; Hedrick TL; Greeter JSM
    Sci Robot; 2020 Sep; 5(46):. PubMed ID: 32999048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny.
    Aiello BR; Stanchak KE; Weber AI; Deora T; Sponberg S; Brunton BW
    Curr Opin Insect Sci; 2021 Dec; 48():8-17. PubMed ID: 34175464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies.
    Wang H; Zeng L; Liu H; Yin C
    J Exp Biol; 2003 Feb; 206(Pt 4):745-57. PubMed ID: 12517991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic storage enables robustness of flapping wing dynamics.
    Cai X; Xue Y; Kolomenskiy D; Xu R; Liu H
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35504276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.
    Kang CK; Shyy W
    J R Soc Interface; 2014 Dec; 11(101):20140933. PubMed ID: 25297319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.