BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34380051)

  • 1. Mapping dependencies of BOLD signal change to end-tidal CO
    Cauzzo S; Callara AL; Morelli MS; Hartwig V; Esposito F; Montanaro D; Passino C; Emdin M; Giannoni A; Vanello N
    J Neurosci Methods; 2021 Oct; 362():109317. PubMed ID: 34380051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing end-tidal CO
    Zvolanek KM; Moia S; Dean JN; Stickland RC; Caballero-Gaudes C; Bright MG
    Neuroimage; 2023 May; 272():120038. PubMed ID: 36958618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Use of Linear-Modelling-based Algorithms for Physiological Noise Correction in fMRI Studies of the Central Breathing Control.
    Cauzzo S; Callara AL; Sole Morelli M; Hartwig V; Montanaro D; Passino C; Emdin M; Giannoni A; Vanello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():808-811. PubMed ID: 31946018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
    Khalili-Mahani N; Chang C; van Osch MJ; Veer IM; van Buchem MA; Dahan A; Beckmann CF; van Gerven JM; Rombouts SA
    Neuroimage; 2013 Jan; 65():499-510. PubMed ID: 23022093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling for the effect of arterial-CO
    Golestani AM; Chen JJ
    Neuroimage; 2020 Aug; 216():116874. PubMed ID: 32335260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.
    Bright MG; Murphy K
    Neuroimage; 2013 Dec; 83():559-68. PubMed ID: 23845426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate.
    Golestani AM; Chang C; Kwinta JB; Khatamian YB; Jean Chen J
    Neuroimage; 2015 Jan; 104():266-77. PubMed ID: 25462695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).
    Frederick Bd; Nickerson LD; Tong Y
    Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase vs. magnitude information in functional magnetic resonance imaging time series: toward understanding the noise.
    Petridou N; Schäfer A; Gowland P; Bowtell R
    Magn Reson Imaging; 2009 Oct; 27(8):1046-57. PubMed ID: 19369024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confirmation of resting-state BOLD fluctuations in the human brainstem and spinal cord after identification and removal of physiological noise.
    Harita S; Stroman PW
    Magn Reson Med; 2017 Dec; 78(6):2149-2156. PubMed ID: 28074492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations.
    Chang C; Glover GH
    Neuroimage; 2009 Oct; 47(4):1448-59. PubMed ID: 19446646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.
    Behzadi Y; Restom K; Liau J; Liu TT
    Neuroimage; 2007 Aug; 37(1):90-101. PubMed ID: 17560126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological noise correction using ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity with simultaneous EEG-fMRI.
    Abreu R; Nunes S; Leal A; Figueiredo P
    Neuroimage; 2017 Jul; 154():115-127. PubMed ID: 27530551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast.
    Wallace TE; Manavaki R; Graves MJ; Patterson AJ; Gilbert FJ
    Phys Med Biol; 2017 Jan; 62(1):127-145. PubMed ID: 27973353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of motion correction and physiological noise regression in fMRI.
    Jones TB; Bandettini PA; Birn RM
    Neuroimage; 2008 Aug; 42(2):582-90. PubMed ID: 18583155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the contribution of neural and physiological signal variation to the low repeatability of emotion-induced BOLD responses.
    Lipp I; Murphy K; Wise RG; Caseras X
    Neuroimage; 2014 Feb; 86():335-42. PubMed ID: 24128735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
    Wise RG; Ide K; Poulin MJ; Tracey I
    Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological noise modeling in fMRI based on the pulsatile component of photoplethysmograph.
    Kassinopoulos M; Mitsis GD
    Neuroimage; 2021 Nov; 242():118467. PubMed ID: 34390877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Echo Time Shifts and Temporal Signal Fluctuations on BOLD Sensitivity in Presurgical Planning at 7 T.
    Dymerska B; De Lima Cardoso P; Bachrata B; Fischmeister F; Matt E; Beisteiner R; Trattnig S; Robinson SD
    Invest Radiol; 2019 Jun; 54(6):340-348. PubMed ID: 30724813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.