These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34380118)

  • 21. Effect of electric field on optoelectronic properties of indiene monolayer for photoelectric nanodevices.
    Singh D; Gupta SK; Lukačević I; Mužević M; Sonvane Y; Ahuja R
    Sci Rep; 2019 Nov; 9(1):17300. PubMed ID: 31754177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors.
    Kang J; Zhang L; Wei SH
    J Phys Chem Lett; 2016 Feb; 7(4):597-602. PubMed ID: 26800573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2.
    Pogna EA; Marsili M; De Fazio D; Dal Conte S; Manzoni C; Sangalli D; Yoon D; Lombardo A; Ferrari AC; Marini A; Cerullo G; Prezzi D
    ACS Nano; 2016 Jan; 10(1):1182-8. PubMed ID: 26691058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of Band Shifting and Interlayer Coupling in W
    Tang PW; Shiau SY; Chou HC; Zhang XQ; Yu JR; Sung CT; Lee YH; Chen C
    ACS Nano; 2022 May; 16(5):7503-7511. PubMed ID: 35486895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy.
    Policht VR; Russo M; Liu F; Trovatello C; Maiuri M; Bai Y; Zhu X; Dal Conte S; Cerullo G
    Nano Lett; 2021 Jun; 21(11):4738-4743. PubMed ID: 34037406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composition-induced type I and direct bandgap transition metal dichalcogenides alloy vertical heterojunctions.
    Zhou S; Ning J; Sun J; Srolovitz DJ
    Nanoscale; 2020 Jan; 12(1):201-209. PubMed ID: 31808497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires.
    Zamani RR; Hage FS; Eljarrat A; Namazi L; Ramasse QM; Dick KA
    Phys Chem Chem Phys; 2021 Nov; 23(44):25019-25023. PubMed ID: 34730587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.
    Liu Q; March K; Crozier PA
    Ultramicroscopy; 2017 Jul; 178():2-11. PubMed ID: 27432780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional CaFCl: ultra-wide bandgap, strong interlayer quantum confinement, and n-type doping.
    Ye XJ; Zhu ZX; Meng L; Liu CS
    Phys Chem Chem Phys; 2020 Aug; 22(30):17213-17220. PubMed ID: 32677646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CVD synthesis of Mo((1-x))W(x)S2 and MoS(2(1-x))Se(2x) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide.
    Zhang W; Li X; Jiang T; Song J; Lin Y; Zhu L; Xu X
    Nanoscale; 2015 Aug; 7(32):13554-60. PubMed ID: 26204564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of Extreme Optical Nonlinearities in Spiral WS
    Fan X; Ji Z; Fei R; Zheng W; Liu W; Zhu X; Chen S; Yang L; Liu H; Pan A; Agarwal R
    Nano Lett; 2020 Apr; 20(4):2667-2673. PubMed ID: 32134674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deciphering the Intense Postgap Absorptions of Monolayer Transition Metal Dichalcogenides.
    Hong J; Koshino M; Senga R; Pichler T; Xu H; Suenaga K
    ACS Nano; 2021 Apr; 15(4):7783-7789. PubMed ID: 33818068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of bandgap bowing in Cs
    Dan S; Maiti A; Chatterjee S; Pal AJ
    J Phys Condens Matter; 2021 Sep; 33(48):. PubMed ID: 34479226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic structure analysis of (In, Ga, Al) N heterostructures on the nanometre scale using EELS.
    Lakner H; Rafferty B; Brockt G
    J Microsc; 1999 Apr; 194(1):79-83. PubMed ID: 10320542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides.
    Jeong TY; Kim H; Choi SJ; Watanabe K; Taniguchi T; Yee KJ; Kim YS; Jung S
    Nat Commun; 2019 Aug; 10(1):3825. PubMed ID: 31444331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides.
    Bertolazzi S; Gobbi M; Zhao Y; Backes C; Samorì P
    Chem Soc Rev; 2018 Aug; 47(17):6845-6888. PubMed ID: 30043037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice Dynamics and Contraction of Energy Bandgap in Photoexcited Semiconducting Boron Nitride Nanotubes.
    Li Z; Xiao RJ; Xu P; Zhu C; Sun S; Zheng D; Wang H; Zhang M; Tian H; Yang HX; Li JQ
    ACS Nano; 2019 Oct; 13(10):11623-11631. PubMed ID: 31532630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anisotropic Spectroscopy and Electrical Properties of 2D ReS
    Wen W; Zhu Y; Liu X; Hsu HP; Fei Z; Chen Y; Wang X; Zhang M; Lin KH; Huang FS; Wang YP; Huang YS; Ho CH; Tan PH; Jin C; Xie L
    Small; 2017 Mar; 13(12):. PubMed ID: 28112865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.