BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34380142)

  • 21. Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate).
    Baran SW; Brown PC; Baudy AR; Fitzpatrick SC; Frantz C; Fullerton A; Gan J; Hardwick RN; Hillgren KM; Kopec AK; Liras JL; Mendrick DL; Nagao R; Proctor WR; Ramsden D; Ribeiro AJS; Stresser D; Sung KE; Sura R; Tetsuka K; Tomlinson L; Van Vleet T; Wagoner MP; Wang Q; Arslan SY; Yoder G; Ekert JE
    ALTEX; 2022; 39(2):297–314. PubMed ID: 35064273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating Biosensors in Organs-on-Chip Devices: A Perspective on Current Strategies to Monitor Microphysiological Systems.
    Ferrari E; Palma C; Vesentini S; Occhetta P; Rasponi M
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32872228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microphysiological Systems: Design, Fabrication, and Applications.
    Wang K; Man K; Liu J; Liu Y; Chen Q; Zhou Y; Yang Y
    ACS Biomater Sci Eng; 2020 Jun; 6(6):3231-3257. PubMed ID: 33204830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. National reflection on organs-on-chip for drug development: New regulatory challenges.
    Teixeira SG; Houeto P; Gattacceca F; Petitcollot N; Debruyne D; Guerbet M; Guillemain J; Fabre I; Louin G; Salomon V
    Toxicol Lett; 2023 Oct; 388():1-12. PubMed ID: 37776962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization.
    Fowler S; Chen WLK; Duignan DB; Gupta A; Hariparsad N; Kenny JR; Lai WG; Liras J; Phillips JA; Gan J
    Lab Chip; 2020 Feb; 20(3):446-467. PubMed ID: 31932816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging microphysiological systems: a review.
    Peel S; Jackman M
    Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corneal epithelium models for safety assessment in drug development: Present and future directions.
    Abdalkader RK; Fujita T
    Exp Eye Res; 2023 Dec; 237():109697. PubMed ID: 37890755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry.
    Baudy AR; Otieno MA; Hewitt P; Gan J; Roth A; Keller D; Sura R; Van Vleet TR; Proctor WR
    Lab Chip; 2020 Jan; 20(2):215-225. PubMed ID: 31799979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the Human Body on Microfluidic Chips.
    Jalili-Firoozinezhad S; Miranda CC; Cabral JMS
    Trends Biotechnol; 2021 Aug; 39(8):838-852. PubMed ID: 33581889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Development of Microphysiological Systems (MPSs) Based on Microfluidic Technology for Drug Discovery in Japan].
    Kimura H
    Yakugaku Zasshi; 2023; 143(1):39-44. PubMed ID: 36596538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates.
    Cavero I; Guillon JM; Holzgrefe HH
    Expert Opin Drug Saf; 2019 Aug; 18(8):651-677. PubMed ID: 31268355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stem cell-based vascularization of microphysiological systems.
    Browne S; Gill EL; Schultheiss P; Goswami I; Healy KE
    Stem Cell Reports; 2021 Sep; 16(9):2058-2075. PubMed ID: 33836144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective.
    Ainslie GR; Davis M; Ewart L; Lieberman LA; Rowlands DJ; Thorley AJ; Yoder G; Ryan AM
    Lab Chip; 2019 Sep; 19(19):3152-3161. PubMed ID: 31469131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip.
    Anderson WA; Bosak A; Hogberg HT; Hartung T; Moore MJ
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):191-206. PubMed ID: 33438114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium.
    Rusyn I; Sakolish C; Kato Y; Stephan C; Vergara L; Hewitt P; Bhaskaran V; Davis M; Hardwick RN; Ferguson SS; Stanko JP; Bajaj P; Adkins K; Sipes NS; Hunter ES; Baltazar MT; Carmichael PL; Sadh K; Becker RA
    Toxicol Sci; 2022 Jul; 188(2):143-152. PubMed ID: 35689632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "Connecting worlds - a view on microfluidics for a wider application".
    Fernandes AC; Gernaey KV; Krühne U
    Biotechnol Adv; 2018; 36(4):1341-1366. PubMed ID: 29733891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity.
    Moon HR; Surianarayanan N; Singh T; Han B
    Biomicrofluidics; 2023 Dec; 17(6):061504. PubMed ID: 38162229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption.
    Allwardt V; Ainscough AJ; Viswanathan P; Sherrod SD; McLean JA; Haddrick M; Pensabene V
    Bioengineering (Basel); 2020 Sep; 7(3):. PubMed ID: 32947816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roadblocks confronting widespread dissemination and deployment of Organs on Chips.
    Alver CG; Drabbe E; Ishahak M; Agarwal A
    Nat Commun; 2024 Jun; 15(1):5118. PubMed ID: 38879554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment.
    Ching T; Toh YC; Hashimoto M; Zhang YS
    Trends Pharmacol Sci; 2021 Sep; 42(9):715-728. PubMed ID: 34187693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.