These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 34380142)
41. Roadblocks confronting widespread dissemination and deployment of Organs on Chips. Alver CG; Drabbe E; Ishahak M; Agarwal A Nat Commun; 2024 Jun; 15(1):5118. PubMed ID: 38879554 [TBL] [Abstract][Full Text] [Related]
42. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Ching T; Toh YC; Hashimoto M; Zhang YS Trends Pharmacol Sci; 2021 Sep; 42(9):715-728. PubMed ID: 34187693 [TBL] [Abstract][Full Text] [Related]
43. Technology Transfer of the Microphysiological Systems: A Case Study of the Human Proximal Tubule Tissue Chip. Sakolish C; Weber EJ; Kelly EJ; Himmelfarb J; Mouneimne R; Grimm FA; House JS; Wade T; Han A; Chiu WA; Rusyn I Sci Rep; 2018 Oct; 8(1):14882. PubMed ID: 30291268 [TBL] [Abstract][Full Text] [Related]
44. Advances in TEER measurements of biological barriers in microphysiological systems. Nazari H; Shrestha J; Naei VY; Bazaz SR; Sabbagh M; Thiery JP; Warkiani ME Biosens Bioelectron; 2023 Aug; 234():115355. PubMed ID: 37159988 [TBL] [Abstract][Full Text] [Related]
45. Organ-on-a-chip: future of female reproductive pathophysiological models. Deng ZM; Dai FF; Wang RQ; Deng HB; Yin TL; Cheng YX; Chen GT J Nanobiotechnology; 2024 Jul; 22(1):455. PubMed ID: 39085921 [TBL] [Abstract][Full Text] [Related]
46. Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling: a case study for blood brain barrier research in a pharmaceutical setting. Fabre KM; Delsing L; Hicks R; Colclough N; Crowther DC; Ewart L Adv Drug Deliv Rev; 2019 Feb; 140():129-135. PubMed ID: 30253201 [TBL] [Abstract][Full Text] [Related]
47. The vascular niche in next generation microphysiological systems. Ewald ML; Chen YH; Lee AP; Hughes CCW Lab Chip; 2021 Sep; 21(17):3244-3262. PubMed ID: 34396383 [TBL] [Abstract][Full Text] [Related]
48. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests. Kimura H; Nakamura H; Goto T; Uchida W; Uozumi T; Nishizawa D; Shinha K; Sakagami J; Doi K Lab Chip; 2024 Jan; 24(3):408-421. PubMed ID: 38131210 [TBL] [Abstract][Full Text] [Related]
49. Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges. Irrechukwu O; Yeager R; David R; Ekert J; Saravanakumar A; Choi CK ALTEX; 2023; 40(3):485-518. PubMed ID: 36648096 [TBL] [Abstract][Full Text] [Related]
50. Microfluidic-based vascularized microphysiological systems. Lee S; Ko J; Park D; Lee SR; Chung M; Lee Y; Jeon NL Lab Chip; 2018 Sep; 18(18):2686-2709. PubMed ID: 30110034 [TBL] [Abstract][Full Text] [Related]
51. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip. Verma N; Pandya A Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289 [TBL] [Abstract][Full Text] [Related]
52. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development. Tagle DA Curr Opin Pharmacol; 2019 Oct; 48():146-154. PubMed ID: 31622895 [TBL] [Abstract][Full Text] [Related]
53. Organ-on-a-Chip. Maschmeyer I; Kakava S Adv Biochem Eng Biotechnol; 2022; 179():311-342. PubMed ID: 32948885 [TBL] [Abstract][Full Text] [Related]
55. From animal testing to Reyes DR; Esch MB; Ewart L; Nasiri R; Herland A; Sung K; Piergiovanni M; Lucchesi C; Shoemaker JT; Vukasinovic J; Nakae H; Hickman J; Pant K; Taylor A; Heinz N; Ashammakhi N Lab Chip; 2024 Feb; 24(5):1076-1087. PubMed ID: 38372151 [TBL] [Abstract][Full Text] [Related]
56. Application of microphysiological systems for nonclinical evaluation of cell therapies. Candarlioglu PL; Delsing L; Gauthier L; Lewis L; Papadopoulos G; Freag M; Chan TS; Homan KA; Fellows MD; Pointon A; Kojala K ALTEX; 2024; 41(3):469-484. PubMed ID: 38746991 [TBL] [Abstract][Full Text] [Related]
57. Facilitating the commercialization and use of organ platforms generated by the microphysiological systems (Tissue Chip) program through public-private partnerships. Livingston CA; Fabre KM; Tagle DA Comput Struct Biotechnol J; 2016; 14():207-210. PubMed ID: 27904714 [TBL] [Abstract][Full Text] [Related]
58. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. Phillips JA; Grandhi TSP; Davis M; Gautier JC; Hariparsad N; Keller D; Sura R; Van Vleet TR Lab Chip; 2020 Feb; 20(3):468-476. PubMed ID: 31989145 [TBL] [Abstract][Full Text] [Related]
59. Harnessing the power of microphysiological systems for COVID-19 research. Kleinstreuer N; Holmes A Drug Discov Today; 2021 Nov; 26(11):2496-2501. PubMed ID: 34332095 [TBL] [Abstract][Full Text] [Related]
60. Gastrointestinal microphysiological systems. Blutt SE; Broughman JR; Zou W; Zeng XL; Karandikar UC; In J; Zachos NC; Kovbasnjuk O; Donowitz M; Estes MK Exp Biol Med (Maywood); 2017 Oct; 242(16):1633-1642. PubMed ID: 28534432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]