These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 34380146)
21. A response surface model to describe the effect of temperature and pH on the growth of Bacillus cereus in cooked rice. Heo SK; Lee JY; Baek SB; Ha SD J Food Prot; 2009 Jun; 72(6):1296-300. PubMed ID: 19610344 [TBL] [Abstract][Full Text] [Related]
22. Survival and growth of foodborne pathogens during cooking and storage of oriental-style rice cakes. Lee SY; Chung HJ; Shin JH; Dougherty RH; Kangi DH J Food Prot; 2006 Dec; 69(12):3037-42. PubMed ID: 17186677 [TBL] [Abstract][Full Text] [Related]
23. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices. Hariram U; Labbé R J Food Prot; 2015 Mar; 78(3):590-6. PubMed ID: 25719886 [TBL] [Abstract][Full Text] [Related]
24. Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products. Kim CW; Cho SH; Kang SH; Park YB; Yoon MH; Lee JB; No WS; Kim JB J Food Sci; 2015 Jan; 80(1):M123-8. PubMed ID: 25472031 [TBL] [Abstract][Full Text] [Related]
25. Determination of the growth limits and kinetic behavior of Listeria monocytogenes in a sliced cooked cured meat product: validation of the predictive growth model under constant and dynamic temperature storage conditions. Mataragas M; Drosinos EH; Siana P; Skandamis P; Metaxopoulos I J Food Prot; 2006 Jun; 69(6):1312-21. PubMed ID: 16786851 [TBL] [Abstract][Full Text] [Related]
26. Prevalence and behaviour of Bacillus cereus in a REPFED of Italian origin. Del Torre M; Della Corte M; Stecchini ML Int J Food Microbiol; 2001 Feb; 63(3):199-207. PubMed ID: 11246903 [TBL] [Abstract][Full Text] [Related]
27. A quantitative microbiological exposure assessment model for Bacillus cereus in pasteurized rice cakes using computational fluid dynamics and Monte Carlo simulation. Park HW; Yoon WB Food Res Int; 2019 Nov; 125():108562. PubMed ID: 31554100 [TBL] [Abstract][Full Text] [Related]
28. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions. Thorsen L; Budde BB; Henrichsen L; Martinussen T; Jakobsen M Int J Food Microbiol; 2009 Aug; 134(1-2):133-9. PubMed ID: 19428136 [TBL] [Abstract][Full Text] [Related]
29. Comparing the mannitol-egg yolk-polymyxin agar plating method with the three-tube most-probable-number method for enumeration of Bacillus cereus spores in raw and high-temperature, short-time pasteurized milk. Harper NM; Getty KJ; Schmidt KA; Nutsch AL; Linton RH J Food Prot; 2011 Mar; 74(3):461-4. PubMed ID: 21375885 [TBL] [Abstract][Full Text] [Related]
30. Presence of Bacillus cereus in street foods in Gaborone, Botswana. Murindamombe GY; Collison EK; Mpuchane SF; Gashe BA J Food Prot; 2005 Feb; 68(2):342-6. PubMed ID: 15726979 [TBL] [Abstract][Full Text] [Related]
31. Development of a time-to-detect growth model for heat-treated Bacillus cereus spores. Daelman J; Sharma A; Vermeulen A; Uyttendaele M; Devlieghere F; Membré JM Int J Food Microbiol; 2013 Aug; 165(3):231-40. PubMed ID: 23796655 [TBL] [Abstract][Full Text] [Related]
32. A stochastic approach for modelling the effects of temperature on the growth rate of Bacillus cereus sensu lato. Le Marc Y; Buss da Silva N; Postollec F; Huchet V; Baranyi J; Ellouze M Int J Food Microbiol; 2021 Jul; 349():109241. PubMed ID: 34022612 [TBL] [Abstract][Full Text] [Related]
33. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes. Eom JS; Lee SY; Choi HS J Food Sci; 2014 Nov; 79(11):M2279-87. PubMed ID: 25359543 [TBL] [Abstract][Full Text] [Related]
34. Modeling the growth kinetics of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations. Olmez HK; Aran N Int J Food Microbiol; 2005 Feb; 98(2):135-43. PubMed ID: 15681041 [TBL] [Abstract][Full Text] [Related]
35. Modelling growth of Bacillus cereus in paneer by one-step parameter estimation. Sarkar D; Hunt I; Macdonald C; Wang B; Bowman JP; Tamplin ML Food Microbiol; 2023 Jun; 112():104231. PubMed ID: 36906319 [TBL] [Abstract][Full Text] [Related]
36. Incidence and characterisation of Phongtang W; Chukeatirote E Biomol Concepts; 2021 Jul; 12(1):85-93. PubMed ID: 34218551 [No Abstract] [Full Text] [Related]
37. Occurrence of Toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean Fermented Soybean Paste. Park KM; Kim HJ; Jeong MC; Koo M J Food Prot; 2016 Apr; 79(4):605-12. PubMed ID: 27052865 [TBL] [Abstract][Full Text] [Related]
38. Presence and growth of Bacillus cereus in dehydrated potato flakes and hot-held, ready-to-eat potato products purchased in New Zealand. Turner NJ; Whyte R; Hudson JA; Kaltovei SL J Food Prot; 2006 May; 69(5):1173-7. PubMed ID: 16715823 [TBL] [Abstract][Full Text] [Related]
39. Shelf life prediction and food safety risk assessment of an innovative whole soybean curd based on predictive models. Wang C; Zhou S; Du Q; Qin W; Wu D; Raheem D; Yang W; Zhang Q J Food Sci Technol; 2019 Sep; 56(9):4233-4241. PubMed ID: 31477994 [TBL] [Abstract][Full Text] [Related]
40. Improvement of mannitol-yolk-polymyxin B agar by supplementing with trimethoprim for quantitative detection of Bacillus cereus in foods. Chon JW; Hyeon JY; Park JH; Song KY; Kim JH; Seo KH J Food Prot; 2012 Jul; 75(7):1342-5. PubMed ID: 22980022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]