BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34380256)

  • 21. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent.
    Nguyen TDP; Le TVA; Show PL; Nguyen TT; Tran MH; Tran TNT; Lee SY
    Bioresour Technol; 2019 Jan; 272():34-39. PubMed ID: 30308405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.
    Wang Y; Yang Y; Ma F; Xuan L; Xu Y; Huo H; Zhou D; Dong S
    Lett Appl Microbiol; 2015 May; 60(5):497-503. PubMed ID: 25693426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrocoagulation reduces harvesting costs for microalgae.
    Lucakova S; Branyikova I; Kovacikova S; Pivokonsky M; Filipenska M; Branyik T; Ruzicka MC
    Bioresour Technol; 2021 Mar; 323():124606. PubMed ID: 33385625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae.
    Kendir S; Franzreb M
    Bioresour Technol; 2024 Jan; 391(Pt B):129964. PubMed ID: 37926356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium.
    Wu Z; Zhu Y; Huang W; Zhang C; Li T; Zhang Y; Li A
    Bioresour Technol; 2012 Apr; 110():496-502. PubMed ID: 22326335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flocculation of Chlorella vulgaris with alum and pH adjustment.
    Mohseni F; Moosavi Zenooz A
    Biotechnol Appl Biochem; 2022 Jun; 69(3):1112-1120. PubMed ID: 34036645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess.
    Lecina M; Nadal G; Solà C; Prat J; Cairó JJ
    Bioresour Technol; 2016 Sep; 216():211-8. PubMed ID: 27240237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into bioflocculation of filamentous cyanobacteria, microalgae and their mixture for a low-cost biomass harvesting system.
    Iasimone F; Seira J; Panico A; De Felice V; Pirozzi F; Steyer JP
    Environ Res; 2021 Aug; 199():111359. PubMed ID: 34022232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microalgal wastewater recycling: Suitability of harvesting methods and influence on growth mechanisms.
    Sun J; Jiang S; Yang L; Chu H; Peng BY; Xiao S; Wang Y; Zhou X; Zhang Y
    Sci Total Environ; 2023 Feb; 859(Pt 2):160237. PubMed ID: 36402329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass.
    Patel AK; Kumar P; Chen CW; Tambat VS; Nguyen TB; Hou CY; Chang JS; Dong CD; Singhania RR
    Bioresour Technol; 2022 Nov; 363():128009. PubMed ID: 36162780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harvesting of microalgae species using Mg-sericite flocculant.
    Lee SM; Choi HJ
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2323-30. PubMed ID: 26341111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.
    Li Y; Xu Y; Zheng T; Wang H
    Bioresour Technol; 2017 Sep; 239():137-143. PubMed ID: 28521222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulation of co-pelletization for Chlorela vulgaris harvest by treatment of Aspergillus niger spore.
    Zheng X; Cong W; Gultom SO; Wang M; Zhou H; Zhang J
    World J Microbiol Biotechnol; 2024 Jan; 40(3):83. PubMed ID: 38286963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.
    Ma X; Zheng H; Zhou W; Liu Y; Chen P; Ruan R
    Appl Biochem Biotechnol; 2016 Oct; 180(4):791-804. PubMed ID: 27206558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation.
    Luo S; Wu X; Jiang H; Yu M; Liu Y; Min A; Li W; Ruan R
    Bioresour Technol; 2019 Jun; 282():325-330. PubMed ID: 30877913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nutrient removal and lipid production by the co-cultivation of Chlorella vulgaris and Scenedesmus dimorphus in landfill leachate diluted with recycled harvesting water.
    Tang C; Gao X; Hu D; Dai D; Qv M; Liu D; Zhu L
    Bioresour Technol; 2023 Feb; 369():128496. PubMed ID: 36526115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(II) adsorption.
    Zhang C; Laipan M; Zhang L; Yu S; Li Y; Guo J
    J Hazard Mater; 2023 Jan; 442():130105. PubMed ID: 36206717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study.
    Lucakova S; Branyikova I; Kovacikova S; Masojidek J; Ranglova K; Branyik T; Ruzicka MC
    Bioresour Technol; 2022 May; 351():126996. PubMed ID: 35292383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seawater supplemented with bicarbonate for efficient marine microalgae production in floating photobioreactor on ocean: A case study of Chlorella sp.
    Zhai X; Zhu C; Zhang Y; Pang H; Kong F; Wang J; Chi Z
    Sci Total Environ; 2020 Oct; 738():139439. PubMed ID: 32531581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii.
    Al-Hothaly KA; Adetutu EM; Taha M; Fabbri D; Lorenzetti C; Conti R; May BH; Shar SS; Bayoumi RA; Ball AS
    Bioresour Technol; 2015 Sep; 191():117-23. PubMed ID: 25983230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.