These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34380262)
21. Nitrogen in the Baltic Sea--policy implications of stock effects. Hart R; Brady M J Environ Manage; 2002 Sep; 66(1):91-103. PubMed ID: 12395590 [TBL] [Abstract][Full Text] [Related]
22. Giving advice on cost effective measures for a cleaner Baltic Sea: a challenge for science. Wulff F; Bonsdorff E; Gren IM; Johansson S; Stigebrandt A Ambio; 2001 Aug; 30(4-5):254-9. PubMed ID: 11697258 [TBL] [Abstract][Full Text] [Related]
23. Prospects for cost-efficient water protection in the Baltic Sea. Hyytiäinen K; Ahlvik L Mar Pollut Bull; 2015 Jan; 90(1-2):188-95. PubMed ID: 25467871 [TBL] [Abstract][Full Text] [Related]
24. The nutrient load from food waste generated onboard ships in the Baltic Sea. Wilewska-Bien M; Granhag L; Andersson K Mar Pollut Bull; 2016 Apr; 105(1):359-66. PubMed ID: 26992746 [TBL] [Abstract][Full Text] [Related]
25. How effective are River Basin Management Plans in reaching the nutrient load reduction targets? Piniewski M; Tattari S; Koskiaho J; Olsson O; Djodjic F; Giełczewski M; Marcinkowski P; Księżniak M; Okruszko T Ambio; 2021 Mar; 50(3):706-722. PubMed ID: 32984937 [TBL] [Abstract][Full Text] [Related]
26. Does divergence of nutrient load measurements matter for successful mitigation of marine eutrophication? Gren IM; Destouni G Ambio; 2012 Mar; 41(2):151-60. PubMed ID: 22396095 [TBL] [Abstract][Full Text] [Related]
27. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach. Lancelot C; Thieu V; Polard A; Garnier J; Billen G; Hecq W; Gypens N Sci Total Environ; 2011 May; 409(11):2179-91. PubMed ID: 21439607 [TBL] [Abstract][Full Text] [Related]
28. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China. Strokal M; Kroeze C; Wang M; Bai Z; Ma L Sci Total Environ; 2016 Aug; 562():869-888. PubMed ID: 27115624 [TBL] [Abstract][Full Text] [Related]
29. Sustainable phosphorus loadings from effective and cost-effective phosphorus management around the Baltic Sea. Bryhn AC PLoS One; 2009; 4(5):e5417. PubMed ID: 19412551 [TBL] [Abstract][Full Text] [Related]
31. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Vahtera E; Conley DJ; Gustafsson BG; Kuosa H; Pitkänen H; Savchuk OP; Tamminen T; Viitasalo M; Voss M; Wasmund N; Wulff F Ambio; 2007 Apr; 36(2-3):186-94. PubMed ID: 17520933 [TBL] [Abstract][Full Text] [Related]
32. Understanding human impact on the Baltic ecosystem: changing views in recent decades. Elmgren R Ambio; 2001 Aug; 30(4-5):222-31. PubMed ID: 11697254 [TBL] [Abstract][Full Text] [Related]
33. A spatial model for nutrient mitigation potential of blue mussel farms in the western Baltic Sea. Holbach A; Maar M; Timmermann K; Taylor D Sci Total Environ; 2020 Sep; 736():139624. PubMed ID: 32479965 [TBL] [Abstract][Full Text] [Related]
34. Searching efficient protection strategies for the eutrophied Gulf of Finland: the combined use of 1D and 3D modeling in assessing long-term state scenarios with high spatial resolution. Pitkänen H; Kiirikki M; Savchuk OP; Räike A; Korpinen P; Wulff F Ambio; 2007 Apr; 36(2-3):272-9. PubMed ID: 17520944 [TBL] [Abstract][Full Text] [Related]
35. Reducing marine eutrophication may require a paradigmatic change. Desmit X; Thieu V; Billen G; Campuzano F; Dulière V; Garnier J; Lassaletta L; Ménesguen A; Neves R; Pinto L; Silvestre M; Sobrinho JL; Lacroix G Sci Total Environ; 2018 Sep; 635():1444-1466. PubMed ID: 29710669 [TBL] [Abstract][Full Text] [Related]
36. Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach. Mörth CM; Humborg C; Eriksson H; Danielsson A; Medina MR; Löfgren S; Swaney DP; Rahm L Ambio; 2007 Apr; 36(2-3):124-33. PubMed ID: 17520924 [TBL] [Abstract][Full Text] [Related]
38. Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea. Kotta J; Raudsepp U; Szava-Kovats R; Aps R; Armoskaite A; Barda I; Bergström P; Futter M; Gröndahl F; Hargrave M; Jakubowska M; Jänes H; Kaasik A; Kraufvelin P; Kovaltchouk N; Krost P; Kulikowski T; Kõivupuu A; Kotta I; Lees L; Loite S; Maljutenko I; Nylund G; Paalme T; Pavia H; Purina I; Rahikainen M; Sandow V; Visch W; Yang B; Barboza FR Sci Total Environ; 2022 Sep; 839():156230. PubMed ID: 35643144 [TBL] [Abstract][Full Text] [Related]
39. Nutrient loads in the river mouth of the Río Verde basin in Jalisco, Mexico: how to prevent eutrophication in the future reservoir? Jayme-Torres G; Hansen AM Environ Sci Pollut Res Int; 2018 Jul; 25(21):20497-20509. PubMed ID: 28980187 [TBL] [Abstract][Full Text] [Related]
40. Trend correlations for coastal eutrophication and its main local and whole-sea drivers - Application to the Baltic Sea. Vigouroux G; Kari E; Beltrán-Abaunza JM; Uotila P; Yuan D; Destouni G Sci Total Environ; 2021 Jul; 779():146367. PubMed ID: 34030242 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]