These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 34380262)
41. Cost-effective control of interdependent water pollutants. Elofsson K Environ Manage; 2006 Jan; 37(1):54-68. PubMed ID: 16273327 [TBL] [Abstract][Full Text] [Related]
42. Nutrient fluxes in the Po basin. de Wit M; Bendoricchio G Sci Total Environ; 2001 Jun; 273(1-3):147-61. PubMed ID: 11419598 [TBL] [Abstract][Full Text] [Related]
43. Implementation of best management practices in agriculture: modelling and monitoring of impacts on nitrogen leaching. Joelsson A; Kyllmar K Water Sci Technol; 2002; 45(9):43-50. PubMed ID: 12079123 [TBL] [Abstract][Full Text] [Related]
44. Isotopic signatures of eelgrass (Zostera marina L.) as bioindicator of anthropogenic nutrient input in the western Baltic Sea. Schubert PR; Karez R; Reusch TB; Dierking J Mar Pollut Bull; 2013 Jul; 72(1):64-70. PubMed ID: 23711843 [TBL] [Abstract][Full Text] [Related]
45. Legacy nutrients in the Baltic Sea drainage basin: How past practices affect eutrophication management. Müller-Karulis B; McCrackin ML; Dessirier B; Gustafsson BG; Humborg C J Environ Manage; 2024 Nov; 370():122478. PubMed ID: 39303590 [TBL] [Abstract][Full Text] [Related]
46. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution. Geng R; Wang X; Sharpley AN; Meng F PLoS One; 2015; 10(8):e0130607. PubMed ID: 26313561 [TBL] [Abstract][Full Text] [Related]
47. Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Bucholc K; Szymczak-Żyła M; Lubecki L; Zamojska A; Hapter P; Tjernström E; Kowalewska G Sci Total Environ; 2014 Mar; 473-474():298-307. PubMed ID: 24374591 [TBL] [Abstract][Full Text] [Related]
48. Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice. Sandman AN; Näslund J; Gren IM; Norling K Ambio; 2018 Dec; 47(8):884-892. PubMed ID: 29730794 [TBL] [Abstract][Full Text] [Related]
49. Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China. Qiu J; Shen Z; Chen L; Hou X Environ Monit Assess; 2019 Aug; 191(9):582. PubMed ID: 31435833 [TBL] [Abstract][Full Text] [Related]
50. Saving the Baltic Sea, the inland waters of its drainage basin, or both? spatial perspectives on reducing P-loads in eastern Sweden. Andersson I; Jarsjö J; Petersson M Ambio; 2014 Nov; 43(7):914-25. PubMed ID: 24799149 [TBL] [Abstract][Full Text] [Related]
51. Spatially differentiated regulation: Can it save the Baltic Sea from excessive N-loads? Refsgaard JC; Hansen AL; Højberg AL; Olesen JE; Hashemi F; Wachniew P; Wörman A; Bartosova A; Stelljes N; Chubarenko B Ambio; 2019 Nov; 48(11):1278-1289. PubMed ID: 31187428 [TBL] [Abstract][Full Text] [Related]
52. Impacts of changing society and climate on nutrient loading to the Baltic Sea. Pihlainen S; Zandersen M; Hyytiäinen K; Andersen HE; Bartosova A; Gustafsson B; Jabloun M; McCrackin M; Meier HEM; Olesen JE; Saraiva S; Swaney D; Thodsen H Sci Total Environ; 2020 Aug; 731():138935. PubMed ID: 32428749 [TBL] [Abstract][Full Text] [Related]
53. Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs. Withers PJ; Lord EI Sci Total Environ; 2002 Jan; 282-283():9-24. PubMed ID: 11852908 [TBL] [Abstract][Full Text] [Related]
54. External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies. Bryhn AC; Dimberg PH; Bergström L; Fredriksson RE; Mattila J; Bergström U Mar Pollut Bull; 2017 Jan; 114(2):664-670. PubMed ID: 27780582 [TBL] [Abstract][Full Text] [Related]
55. In-time source tracking of watershed loads of Taihu Lake Basin, China based on spatial relationship modeling. Wang C; Bi J; Zhang XX; Fang Q; Qi Y Environ Sci Pollut Res Int; 2018 Aug; 25(22):22085-22094. PubMed ID: 29802613 [TBL] [Abstract][Full Text] [Related]
56. Spatially differentiated strategies for reducing nitrate loads from agriculture in two Danish catchments. Hashemi F; Olesen JE; Hansen AL; Børgesen CD; Dalgaard T J Environ Manage; 2018 Feb; 208():77-91. PubMed ID: 29248789 [TBL] [Abstract][Full Text] [Related]
57. Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China. Ni Z; Wang S Environ Sci Pollut Res Int; 2015 Dec; 22(23):18561-73. PubMed ID: 26385856 [TBL] [Abstract][Full Text] [Related]
58. Management options and effects on a marine ecosystem: assessing the future of the Baltic. Wulff F; Savchuk OP; Sokolov A; Humborg C; Mörth CM Ambio; 2007 Apr; 36(2-3):243-9. PubMed ID: 17520940 [TBL] [Abstract][Full Text] [Related]
59. Promise and performance of agricultural nutrient management policy: Lessons from the Baltic Sea. Thorsøe MH; Andersen MS; Brady MV; Graversgaard M; Kilis E; Pedersen AB; Pitzén S; Valve H Ambio; 2022 Jan; 51(1):36-50. PubMed ID: 34043157 [TBL] [Abstract][Full Text] [Related]
60. Eutrophication in the Polish coastal zone: the past, present status and future scenarios. Łysiak-Pastuszak E; Drgas N; Piatkowska Z Mar Pollut Bull; 2004 Aug; 49(3):186-95. PubMed ID: 15245983 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]