BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34380502)

  • 1. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing.
    Li G; Wang Y; Li X; Wang Y; Huang X; Gao J; Hu X
    Cell Commun Signal; 2021 Aug; 19(1):84. PubMed ID: 34380502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cytosine deaminase for programmable single-base RNA editing.
    Abudayyeh OO; Gootenberg JS; Franklin B; Koob J; Kellner MJ; Ladha A; Joung J; Kirchgatterer P; Cox DBT; Zhang F
    Science; 2019 Jul; 365(6451):382-386. PubMed ID: 31296651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ecRESCUE: a novel ecDHFR-regulated RESCUE system with reduced RNA off-targeting activity.
    Wang Y; Li G; Li X; Wang Y; Huang X; Hu X; Gao J
    Cell Commun Signal; 2021 Jul; 19(1):81. PubMed ID: 34332602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Develop a Compact RNA Base Editor by Fusing ADAR with Engineered EcCas6e.
    Wang X; Zhang R; Yang D; Li G; Fan Z; Du H; Wang Z; Liu Y; Lin J; Wu X; Shi L; Yang H; Zhou Y
    Adv Sci (Weinh); 2023 Jun; 10(17):e2206813. PubMed ID: 37098587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S.
    Latifi N; Mack AM; Tellioglu I; Di Giorgio S; Stafforst T
    Nucleic Acids Res; 2023 Aug; 51(15):e84. PubMed ID: 37462074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial RNA Editing with ADAR for Gene Therapy.
    Bhakta S; Tsukahara T
    Curr Gene Ther; 2020; 20(1):44-54. PubMed ID: 32416688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact RNA editors with small Cas13 proteins.
    Kannan S; Altae-Tran H; Jin X; Madigan VJ; Oshiro R; Makarova KS; Koonin EV; Zhang F
    Nat Biotechnol; 2022 Feb; 40(2):194-197. PubMed ID: 34462587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant alternative splicing pattern of ADAR2 downregulates adenosine-to-inosine editing in glioma.
    Li Z; Tian Y; Tian N; Zhao X; Du C; Han L; Zhang H
    Oncol Rep; 2015 Jun; 33(6):2845-52. PubMed ID: 25873329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of enzymes for adenosine-to-inosine editing and discovery of cytidine-to-uridine editing in nucleus-encoded transfer RNAs of Arabidopsis.
    Zhou W; Karcher D; Bock R
    Plant Physiol; 2014 Dec; 166(4):1985-97. PubMed ID: 25315605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editing of messenger RNA precursors and of tRNAs by adenosine to inosine conversion.
    Keller W; Wolf J; Gerber A
    FEBS Lett; 1999 Jun; 452(1-2):71-6. PubMed ID: 10376681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Engineered CRISPR-Cas-Mediated Systems for Site-Specific RNA Editing.
    Marina RJ; Brannan KW; Dong KD; Yee BA; Yeo GW
    Cell Rep; 2020 Nov; 33(5):108350. PubMed ID: 33147453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA editing with CRISPR-Cas13.
    Cox DBT; Gootenberg JS; Abudayyeh OO; Franklin B; Kellner MJ; Joung J; Zhang F
    Science; 2017 Nov; 358(6366):1019-1027. PubMed ID: 29070703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs.
    Heraud-Farlow JE; Walkley CR
    Open Biol; 2020 Jul; 10(7):200085. PubMed ID: 32603639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REPAIRx, a specific yet highly efficient programmable A > I RNA base editor.
    Liu Y; Mao S; Huang S; Li Y; Chen Y; Di M; Huang X; Lv J; Wang X; Ge J; Shen S; Zhang X; Liu D; Huang X; Chi T
    EMBO J; 2020 Nov; 39(22):e104748. PubMed ID: 33058207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine-to-Inosine RNA Editing Enzyme ADAR and microRNAs.
    Yuting K; Ding D; Iizasa H
    Methods Mol Biol; 2021; 2181():83-95. PubMed ID: 32729076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine Deaminase Acting on RNA 1 Associates with Orf Virus OV20.0 and Enhances Viral Replication.
    Liao GR; Tseng YY; Tseng CY; Lin FY; Yamada Y; Liu HP; Kuan CY; Hsu WL
    J Virol; 2019 Apr; 93(7):. PubMed ID: 30651363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Newly identified ADAR-mediated A-to-I editing positions as a tool for ALS research.
    Kwak S; Nishimoto Y; Yamashita T
    RNA Biol; 2008; 5(4):193-7. PubMed ID: 18971634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable RNA base editing with photoactivatable CRISPR-Cas13.
    Yu J; Shin J; Yu J; Kim J; Yu D; Heo WD
    Nat Commun; 2024 Jan; 15(1):673. PubMed ID: 38253589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine to Inosine editing frequency controlled by splicing efficiency.
    Licht K; Kapoor U; Mayrhofer E; Jantsch MF
    Nucleic Acids Res; 2016 Jul; 44(13):6398-408. PubMed ID: 27112566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis.
    Vlachogiannis NI; Gatsiou A; Silvestris DA; Stamatelopoulos K; Tektonidou MG; Gallo A; Sfikakis PP; Stellos K
    J Autoimmun; 2020 Jan; 106():102329. PubMed ID: 31493964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.