BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34380502)

  • 41. N
    Xiang JF; Yang Q; Liu CX; Wu M; Chen LL; Yang L
    Mol Cell; 2018 Jan; 69(1):126-135.e6. PubMed ID: 29304330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Short-Chain Guide RNA for Site-Directed A-to-I RNA Editing.
    Nose K; Hidaka K; Yano T; Tomita Y; Fukuda M
    Nucleic Acid Ther; 2021 Feb; 31(1):58-67. PubMed ID: 33170095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In cancer, A-to-I RNA editing can be the driver, the passenger, or the mechanic.
    Ganem NS; Ben-Asher N; Lamm AT
    Drug Resist Updat; 2017 May; 32():16-22. PubMed ID: 29145975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-throughput screening for functional adenosine to inosine RNA editing systems.
    Pokharel S; Beal PA
    ACS Chem Biol; 2006 Dec; 1(12):761-5. PubMed ID: 17240974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity.
    Richter MF; Zhao KT; Eton E; Lapinaite A; Newby GA; Thuronyi BW; Wilson C; Koblan LW; Zeng J; Bauer DE; Doudna JA; Liu DR
    Nat Biotechnol; 2020 Jul; 38(7):883-891. PubMed ID: 32433547
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate recognition by ADAR1 and ADAR2.
    Wong SK; Sato S; Lazinski DW
    RNA; 2001 Jun; 7(6):846-58. PubMed ID: 11421361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. c-Jun amino-terminal kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic beta-cells.
    Yang L; Huang P; Li F; Zhao L; Zhang Y; Li S; Gan Z; Lin A; Li W; Liu Y
    PLoS One; 2012; 7(11):e48611. PubMed ID: 23139803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity.
    Li J; Yu W; Huang S; Wu S; Li L; Zhou J; Cao Y; Huang X; Qiao Y
    Nat Commun; 2021 Apr; 12(1):2287. PubMed ID: 33863894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Epitranscriptome and Innate Immunity.
    O'Connell MA; Mannion NM; Keegan LP
    PLoS Genet; 2015 Dec; 11(12):e1005687. PubMed ID: 26658668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ADAR2 editing activity in newly diagnosed versus relapsed pediatric high-grade astrocytomas.
    Tomaselli S; Galeano F; Massimi L; Di Rocco C; Lauriola L; Mastronuzzi A; Locatelli F; Gallo A
    BMC Cancer; 2013 May; 13():255. PubMed ID: 23697632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis.
    Song Y; An O; Ren X; Chan THM; Tay DJT; Tang SJ; Han J; Hong H; Ng VHE; Ke X; Shen H; Pitcheshwar P; Lin JS; Leong KW; Molias FB; Yang H; Kappei D; Chen L
    J Hepatol; 2021 Jan; 74(1):135-147. PubMed ID: 32693003
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in mammalian RNA editing.
    Niswender CM
    Cell Mol Life Sci; 1998 Sep; 54(9):946-64. PubMed ID: 9791538
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA-editing enzymes ADAR1 and ADAR2 coordinately regulate the editing and expression of Ctn RNA.
    Anantharaman A; Gholamalamdari O; Khan A; Yoon JH; Jantsch MF; Hartner JC; Gorospe M; Prasanth SG; Prasanth KV
    FEBS Lett; 2017 Sep; 591(18):2890-2904. PubMed ID: 28833069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients.
    Yamashita T; Kwak S
    Brain Res; 2014 Oct; 1584():28-38. PubMed ID: 24355598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A-to-I RNA editing and cancer: from pathology to basic science.
    Gallo A; Galardi S
    RNA Biol; 2008; 5(3):135-9. PubMed ID: 18758244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biallelic variants in
    Maroofian R; Sedmík J; Mazaheri N; Scala M; Zaki MS; Keegan LP; Azizimalamiri R; Issa M; Shariati G; Sedaghat A; Beetz C; Bauer P; Galehdari H; O'Connell MA; Houlden H
    J Med Genet; 2021 Jul; 58(7):495-504. PubMed ID: 32719099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing.
    Hong H; Lin JS; Chen L
    Biosci Rep; 2015 Mar; 35(2):. PubMed ID: 25662729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics.
    Nakano M; Nakajima M
    Pharmacol Ther; 2018 Jan; 181():13-21. PubMed ID: 28716651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm.
    Terajima H; Yoshitane H; Ozaki H; Suzuki Y; Shimba S; Kuroda S; Iwasaki W; Fukada Y
    Nat Genet; 2017 Jan; 49(1):146-151. PubMed ID: 27893733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. C-to-U RNA Editing: From Computational Detection to Experimental Validation.
    Lerner T; Kluesner M; Tasakis RN; Moriarity BS; Papavasiliou FN; Pecori R
    Methods Mol Biol; 2021; 2181():51-67. PubMed ID: 32729074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.