BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34380762)

  • 1. Role of Inferior Frontal Junction (IFJ) in the Control of Feature versus Spatial Attention.
    Meyyappan S; Rajan A; Mangun GR; Ding M
    J Neurosci; 2021 Sep; 41(38):8065-8074. PubMed ID: 34380762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control.
    Tamber-Rosenau BJ; Asplund CL; Marois R
    J Neurophysiol; 2018 Nov; 120(5):2498-2512. PubMed ID: 30156458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Top-down modulation of visual feature processing: the role of the inferior frontal junction.
    Zanto TP; Rubens MT; Bollinger J; Gazzaley A
    Neuroimage; 2010 Nov; 53(2):736-45. PubMed ID: 20600999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional connectivity fingerprints of the frontal eye field and inferior frontal junction suggest spatial versus nonspatial processing in the prefrontal cortex.
    Soyuhos O; Baldauf D
    Eur J Neurosci; 2023 Apr; 57(7):1114-1140. PubMed ID: 36789470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-down control of the left visual field bias in cued visual spatial attention.
    Meyyappan S; Rajan A; Mangun GR; Ding M
    Cereb Cortex; 2023 Apr; 33(9):5097-5107. PubMed ID: 36245213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network.
    Sundermann B; Pfleiderer B
    BMC Neurosci; 2012 Oct; 13():119. PubMed ID: 23033990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources of top-down control in visual search.
    Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR
    J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the effects of feature salience and top-down attention in the early visual system.
    Poltoratski S; Ling S; McCormack D; Tong F
    J Neurophysiol; 2017 Jul; 118(1):564-573. PubMed ID: 28381491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.
    Silvetti M; Lasaponara S; Lecce F; Dragone A; Macaluso E; Doricchi F
    Cereb Cortex; 2016 Dec; 26(12):4551-4562. PubMed ID: 26405052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study.
    Thiel CM; Zilles K; Fink GR
    Neuroimage; 2004 Jan; 21(1):318-28. PubMed ID: 14741670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
    Dombert PL; Kuhns A; Mengotti P; Fink GR; Vossel S
    Neuroimage; 2016 Nov; 142():553-564. PubMed ID: 27523448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural mechanisms of top-down attentional control.
    Hopfinger JB; Buonocore MH; Mangun GR
    Nat Neurosci; 2000 Mar; 3(3):284-91. PubMed ID: 10700262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanisms of top-down control during spatial and feature attention.
    Giesbrecht B; Woldorff MG; Song AW; Mangun GR
    Neuroimage; 2003 Jul; 19(3):496-512. PubMed ID: 12880783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous and discrete representations of feature-based attentional priority in human frontoparietal network.
    Gong M; Liu T
    Cogn Neurosci; 2020 Jan; 11(1-2):47-59. PubMed ID: 30922203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas.
    Zhang X; Mlynaryk N; Ahmed S; Japee S; Ungerleider LG
    PLoS Biol; 2018 Jun; 16(6):e2005399. PubMed ID: 29939981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location- or feature-based targeting of peripheral attention.
    Vandenberghe R; Gitelman DR; Parrish TB; Mesulam MM
    Neuroimage; 2001 Jul; 14(1 Pt 1):37-47. PubMed ID: 11525335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis.
    Bedini M; Olivetti E; Avesani P; Baldauf D
    Brain Struct Funct; 2023 May; 228(3-4):997-1017. PubMed ID: 37093304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.