These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 343809)
1. Calorimetric analysis of aspartate transcarbamylase from Escherichia coli. Binding of substrates and substrate analogues to the native enzyme and catalytic subunit. Knier BL; Allewell NM Biochemistry; 1978 Mar; 17(5):784-90. PubMed ID: 343809 [No Abstract] [Full Text] [Related]
2. Bohr effect in Escherichia coli aspartate transcarbamylase. Linkages between substrate binding, proton binding, and conformational transitions. Allwell NM; Hofmann GE; Zaug A; Lennick M Biochemistry; 1979 Jul; 18(14):3008-15. PubMed ID: 37893 [No Abstract] [Full Text] [Related]
3. The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: a molecular modelling study. Gouaux JE; Krause KL; Lipscomb WN Biochem Biophys Res Commun; 1987 Feb; 142(3):893-7. PubMed ID: 3548720 [TBL] [Abstract][Full Text] [Related]
4. Revisiting the allosteric mechanism of aspartate transcarbamoylase. Fetler L; Vachette P Nat Struct Biol; 2002 Feb; 9(2):87-9. PubMed ID: 11813011 [No Abstract] [Full Text] [Related]
5. The catalytic site of Escherichia coli aspartate transcarbamylase: interaction between histidine 134 and the carbonyl group of the substrate carbamyl phosphate. Xi XG; Van Vliet F; Ladjimi MM; Cunin R; Hervé G Biochemistry; 1990 Sep; 29(36):8491-8. PubMed ID: 2252907 [TBL] [Abstract][Full Text] [Related]
6. The binding of N-(phosphonacetyl)-L-aspartate to aspartate carbamoyltransferase of Escherichia coli. Volź KW; Krause KL; Lipscomb WN Biochem Biophys Res Commun; 1986 Apr; 136(2):822-6. PubMed ID: 3518720 [TBL] [Abstract][Full Text] [Related]
7. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0. Hsuanyu Y; Wedler FC Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211 [TBL] [Abstract][Full Text] [Related]
8. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase. Xu W; Kantrowitz ER Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892 [TBL] [Abstract][Full Text] [Related]
9. Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi: thermostability and 1.8A resolution crystal structure of the catalytic subunit complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate. Van Boxstael S; Cunin R; Khan S; Maes D J Mol Biol; 2003 Feb; 326(1):203-16. PubMed ID: 12547202 [TBL] [Abstract][Full Text] [Related]
10. Calorimetric estimate of the enthalpy change for the substrate-promoted conformational transition of aspartate transcarbamoylase from Escherichia coli. Shrake A; Ginsburg A; Schachman HK J Biol Chem; 1981 May; 256(10):5005-15. PubMed ID: 7014568 [No Abstract] [Full Text] [Related]
11. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. Ke HM; Lipscomb WN; Cho YJ; Honzatko RB J Mol Biol; 1988 Dec; 204(3):725-47. PubMed ID: 3066911 [TBL] [Abstract][Full Text] [Related]
12. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase. Newton CJ; Stevens RC; Kantrowitz ER Biochemistry; 1992 Mar; 31(11):3026-32. PubMed ID: 1550826 [TBL] [Abstract][Full Text] [Related]
13. 13C isotope effect studies of Escherichia coli aspartate transcarbamylase in the presence of the bisubstrate analog N-(phosphonoacetyl)-L-aspartate. Parmentier LE; O'Leary MH; Schachman HK; Cleland WW Biochemistry; 1992 Jul; 31(28):6598-602. PubMed ID: 1633172 [TBL] [Abstract][Full Text] [Related]
14. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
15. Three residues involved in binding and catalysis in the carbamyl phosphate binding site of Escherichia coli aspartate transcarbamylase. Stebbins JW; Xu W; Kantrowitz ER Biochemistry; 1989 Mar; 28(6):2592-600. PubMed ID: 2659074 [TBL] [Abstract][Full Text] [Related]
16. The allosteric activator Mg-ATP modifies the quaternary structure of the R-state of Escherichia coli aspartate transcarbamylase without altering the T<-->R equilibrium. Fetler L; Vachette P J Mol Biol; 2001 Jun; 309(3):817-32. PubMed ID: 11397099 [TBL] [Abstract][Full Text] [Related]
17. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer. Zhou BB; Waldrop GL; Lum L; Schachman HK Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226 [TBL] [Abstract][Full Text] [Related]
18. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205 [TBL] [Abstract][Full Text] [Related]
19. A kinetic model of cooperativity in aspartate transcarbamylase. Dembo M; Rubinow SI Biophys J; 1977 Jun; 18(3):245-67. PubMed ID: 329911 [TBL] [Abstract][Full Text] [Related]
20. 13C isotope effects as a probe of the kinetic mechanism and allosteric properties of Escherichia coli aspartate transcarbamylase. Parmentier LE; O'Leary MH; Schachman HK; Cleland WW Biochemistry; 1992 Jul; 31(28):6570-6. PubMed ID: 1633168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]