BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 343810)

  • 1. Nucleotide clusters in deoxyribonucleic acids: sequence analysis of DNA using pyrimidine oligonucleotides as primers in the DNA polymerase I repair reaction.
    Kaptein JS; Spencer JH
    Biochemistry; 1978 Mar; 17(5):841-50. PubMed ID: 343810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide clusters in deoxyribonucleic acids. XIII. Sequence analysis of the longer unique pyrimidine oligonucleotides of bacteriophage S13 DNA by a method using unlabeled atarting oligonucleotides.
    Delaney AD; Spencer JH
    Biochim Biophys Acta; 1976 Jul; 435(3):269-81. PubMed ID: 779845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blockage of polymerase-catalyzed DNA chain elongation by chemically modified cytosine residues in templates and the release of blockage for readthrough.
    Bessho T; Nitta N; Negishi K; Hayatsu H
    Nucleic Acids Res; 1992 Aug; 20(16):4213-20. PubMed ID: 1508715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of repair synthesis initiated by T4 endonuclease V on a synthetic DNA substrate.
    Sibghat-Ullah ; Sancar A
    Indian J Biochem Biophys; 1992 Jun; 29(3):227-30. PubMed ID: 1512008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide clusters in deoxyribonucleic acids. Comparison of the sequences of the large pyrimidine oligonucleotides of bacteriophages S13 and phiX174 deoxyribonucleic acids.
    Harbers B; Delaney AD; Harbers K; Spencer JH
    Biochemistry; 1976 Jan; 15(2):407-14. PubMed ID: 174716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns.
    Horlacher J; Hottiger M; Podust VN; Hübscher U; Benner SA
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6329-33. PubMed ID: 7541538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defined transversion mutations at a specific position in DNA using synthetic oligodeoxyribonucleotides as mutagens.
    Gillam S; Jahnke P; Astell C; Phillips S; Hutchison CA; Smith M
    Nucleic Acids Res; 1979 Jul; 6(9):2973-85. PubMed ID: 158749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical synthesis of an octanucleotide complementary to a portion of the cohesive end of P2 DNA and studies on the stability of duplex formation with P2 DNA.
    Padmanabhan R
    Biochemistry; 1977 May; 16(9):1996-2003. PubMed ID: 857884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specifically modified oligodeoxyribonucleotides as templates for Escherichia coli DNA polymerase I.
    O'Connor D; Stöhrer G
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2325-9. PubMed ID: 3887400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA end joining by the Klenow fragment of DNA polymerase I.
    King JS; Fairley CF; Morgan WF
    J Biol Chem; 1996 Aug; 271(34):20450-7. PubMed ID: 8702784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequence analysis of DNA. IX. Use of oligonucleotides of defined sequence as primers in DNA sequence analysis.
    Padmanabhan R; Wu R
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1295-302. PubMed ID: 4560009
    [No Abstract]   [Full Text] [Related]  

  • 14. In vitro bypass of UV-induced lesions by Escherichia coli DNA polymerase I: specificity of nucleotide incorporation.
    Rabkin SD; Moore PD; Strauss BS
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1541-5. PubMed ID: 6340105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [E. coli DNA polymerase. A study of the mechanism of primer binding using oligothymidylate analogs with ethylated internucleotide phosphate groups].
    Levina AS; Nevinskiĭ GA; Lavrik OI
    Bioorg Khim; 1985 Mar; 11(3):358-69. PubMed ID: 3890861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in replication of a DNA template containing an ethyl phosphotriester by T4 DNA polymerase and Escherichia coli DNA polymerase I.
    Tsujikawa L; Weinfield M; Reha-Krantz LJ
    Nucleic Acids Res; 2003 Sep; 31(17):4965-72. PubMed ID: 12930945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the fidelity of DNA replication. Specificity of nucleotide substitution by intercalating agents.
    Shearman CW; Loeb LA
    J Biol Chem; 1983 Apr; 258(7):4477-84. PubMed ID: 6339499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translesional synthesis on DNA templates containing the 2'-deoxyribonolactone lesion.
    Berthet N; Roupioz Y; Constant JF; Kotera M; Lhomme J
    Nucleic Acids Res; 2001 Jul; 29(13):2725-32. PubMed ID: 11433017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA synthesis on discontinuous templates by DNA polymerase I of Escherichia coli.
    Clark JM
    Gene; 1991 Jul; 104(1):75-80. PubMed ID: 1916280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis during in vitro DNA synthesis.
    Weymouth LA; Loeb LA
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1924-8. PubMed ID: 347450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.