BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 34381017)

  • 21. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.
    Guo W; Yan L; Yang L; Liu X; E Q; Gao P; Ye X; Liu W; Zuo J
    PLoS One; 2014; 9(1):e85766. PubMed ID: 24465691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acquired resistance to HSP90 inhibitor 17-AAG and increased metastatic potential are associated with MUC1 expression in colon carcinoma cells.
    Liu X; Ban LL; Luo G; Li ZY; Li YF; Zhou YC; Wang XC; Jin CG; Ye JG; Ma DD; Xie Q; Huang YG
    Anticancer Drugs; 2016 Jun; 27(5):417-26. PubMed ID: 26872308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hsp90 inhibitor geldanamycin enhances the antitumor efficacy of enediyne lidamycin in association with reduced DNA damage repair.
    Han FF; Li L; Shang BY; Shao RG; Zhen YS
    Asian Pac J Cancer Prev; 2014; 15(17):7043-8. PubMed ID: 25227788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51.
    Yao Q; Weigel B; Kersey J
    Clin Cancer Res; 2007 Mar; 13(5):1591-600. PubMed ID: 17332306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90.
    Sydor JR; Normant E; Pien CS; Porter JR; Ge J; Grenier L; Pak RH; Ali JA; Dembski MS; Hudak J; Patterson J; Penders C; Pink M; Read MA; Sang J; Woodward C; Zhang Y; Grayzel DS; Wright J; Barrett JA; Palombella VJ; Adams J; Tong JK
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17408-13. PubMed ID: 17090671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hsp90 inhibitor geldanamycin increases the sensitivity of resistant ovarian adenocarcinoma cell line A2780cis to cisplatin.
    Solár P; Horváth V; Kleban J; Koval' J; Solárová Z; Kozubík A; Fedorocko P
    Neoplasma; 2007; 54(2):127-30. PubMed ID: 17319785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The HSP90 inhibitor 17-N-allylamino-17-demethoxy geldanamycin (17-AAG) synergizes with cisplatin and induces apoptosis in cisplatin-resistant esophageal squamous cell carcinoma cell lines via the Akt/XIAP pathway.
    Ui T; Morishima K; Saito S; Sakuma Y; Fujii H; Hosoya Y; Ishikawa S; Aburatani H; Fukayama M; Niki T; Yasuda Y
    Oncol Rep; 2014 Feb; 31(2):619-24. PubMed ID: 24317439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat shock protein 90 inhibition abrogates hepatocellular cancer growth through cdc2-mediated G2/M cell cycle arrest and apoptosis.
    Watanabe G; Behrns KE; Kim JS; Kim RD
    Cancer Chemother Pharmacol; 2009 Aug; 64(3):433-43. PubMed ID: 19082595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.
    Chai RC; Kouspou MM; Lang BJ; Nguyen CH; van der Kraan AG; Vieusseux JL; Lim RC; Gillespie MT; Benjamin IJ; Quinn JM; Price JT
    J Biol Chem; 2014 May; 289(19):13602-14. PubMed ID: 24692538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models.
    Banerji U; Sain N; Sharp SY; Valenti M; Asad Y; Ruddle R; Raynaud F; Walton M; Eccles SA; Judson I; Jackman AL; Workman P
    Cancer Chemother Pharmacol; 2008 Oct; 62(5):769-78. PubMed ID: 18193424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth.
    Lang SA; Moser C; Gaumann A; Klein D; Glockzin G; Popp FC; Dahlke MH; Piso P; Schlitt HJ; Geissler EK; Stoeltzing O
    Clin Cancer Res; 2007 Nov; 13(21):6459-68. PubMed ID: 17975158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combinatorial Inhibition of mTORC2 and Hsp90 Leads to a Distinctly Effective Therapeutic Strategy in Malignant Pheochromocytoma.
    Zhang X; Gao F; Zhong S
    Curr Cancer Drug Targets; 2019; 19(9):698-706. PubMed ID: 30727894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90.
    Lundgren K; Zhang H; Brekken J; Huser N; Powell RE; Timple N; Busch DJ; Neely L; Sensintaffar JL; Yang YC; McKenzie A; Friedman J; Scannevin R; Kamal A; Hong K; Kasibhatla SR; Boehm MF; Burrows FJ
    Mol Cancer Ther; 2009 Apr; 8(4):921-9. PubMed ID: 19372565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro study comparing the efficacy of the water-soluble HSP90 inhibitors, 17-AEPGA and 17-DMAG, with that of the non‑water-soluble HSP90 inhibitor, 17-AAG, in breast cancer cell lines.
    Ghadban T; Jessen A; Reeh M; Dibbern JL; Mahner S; Mueller V; Wellner UF; Güngör C; Izbicki JR; Vashist YK
    Int J Mol Med; 2016 Oct; 38(4):1296-302. PubMed ID: 27498942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 17-AAG and 17-DMAG-induced inhibition of cell proliferation through B-Raf downregulation in WT B-Raf-expressing uveal melanoma cell lines.
    Babchia N; Calipel A; Mouriaux F; Faussat AM; Mascarelli F
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2348-56. PubMed ID: 18281615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 17-AAG mediated targeting of Hsp90 limits tert activity in peritoneal sarcoma related malignant ascites by downregulating cyclin D1 during cell cycle entry.
    Chaklader M; Das P; Pereira JA; Law A; Chattopadhyay S; Chatterjee R; Mondal A; Law S
    Exp Oncol; 2012 Jul; 34(2):90-6. PubMed ID: 23013759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo.
    Lang SA; Klein D; Moser C; Gaumann A; Glockzin G; Dahlke MH; Dietmaier W; Bolder U; Schlitt HJ; Geissler EK; Stoeltzing O
    Mol Cancer Ther; 2007 Mar; 6(3):1123-32. PubMed ID: 17363505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling.
    Saturno G; Valenti M; De Haven Brandon A; Thomas GV; Eccles S; Clarke PA; Workman P
    Oncotarget; 2013 Aug; 4(8):1185-98. PubMed ID: 23852390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation.
    Krishnamoorthy GP; Guida T; Alfano L; Avilla E; Santoro M; Carlomagno F; Melillo RM
    J Biol Chem; 2013 Jun; 288(24):17481-94. PubMed ID: 23629654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer.
    Lamoureux F; Thomas C; Yin MJ; Fazli L; Zoubeidi A; Gleave ME
    Eur Urol; 2014 Jul; 66(1):145-55. PubMed ID: 24411988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.