BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34381069)

  • 1. k-core genes underpin structural features of breast cancer.
    Dorantes-Gilardi R; García-Cortés D; Hernández-Lemus E; Espinal-Enríquez J
    Sci Rep; 2021 Aug; 11(1):16284. PubMed ID: 34381069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Transcription Factors in the Loss of Inter-Chromosomal Co-Expression for Breast Cancer Subtypes.
    Trujillo-Ortíz R; Espinal-Enríquez J; Hernández-Lemus E
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations.
    García-Cortés D; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2021; 12():629475. PubMed ID: 33959148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Long Distance Co-Expression in Lung Cancer.
    Andonegui-Elguera SD; Zamora-Fuentes JM; Espinal-Enríquez J; Hernández-Lemus E
    Front Genet; 2021; 12():625741. PubMed ID: 33777098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mixture model to detect edges in sparse co-expression graphs with an application for comparing breast cancer subtypes.
    Bar H; Bang S
    PLoS One; 2021; 16(2):e0246945. PubMed ID: 33571253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prognosis related genes in HER2+ breast cancer based on weighted gene co-expression network analysis.
    Weng Y; Jia R; Li Z; Liang W; Ji Y; Liang Y; Ning P
    Chin Med J (Engl); 2023 May; 136(10):1258-1260. PubMed ID: 37104618
    [No Abstract]   [Full Text] [Related]  

  • 7. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes.
    Dutta B; Pusztai L; Qi Y; André F; Lazar V; Bianchini G; Ueno N; Agarwal R; Wang B; Shiang CY; Hortobagyi GN; Mills GB; Symmans WF; Balázsi G
    Br J Cancer; 2012 Mar; 106(6):1107-16. PubMed ID: 22343619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria.
    Cingiz MÖ; Biricik G; Diri B
    Interdiscip Sci; 2021 Sep; 13(3):500-510. PubMed ID: 34003445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dual role of FOXF2 in regulation of DNA replication and the epithelial-mesenchymal transition in breast cancer progression.
    Lo PK; Lee JS; Liang X; Sukumar S
    Cell Signal; 2016 Oct; 28(10):1502-19. PubMed ID: 27377963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a 15-Gene Signature Model as a Prognostic Tool in Sex Hormone-Dependent Cancers.
    Xia Z; Xiao J; Liu A; Chen Q
    Biomed Res Int; 2021; 2021():3676107. PubMed ID: 34869761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing nuclear receptor hub modules from Basal-like breast cancer expression networks.
    Hsu SN; Hui EWE; Liu M; Wu D; Hughes TA; Smith J
    PLoS One; 2021; 16(6):e0252901. PubMed ID: 34161324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition.
    Fredlund E; Staaf J; Rantala JK; Kallioniemi O; Borg A; Ringnér M
    Breast Cancer Res; 2012 Jul; 14(4):R113. PubMed ID: 22839103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen.
    Liu R; Guo CX; Zhou HH
    Cancer Biol Ther; 2015; 16(2):317-24. PubMed ID: 25756514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the key pathways and genes involved in HER2-positive breast cancer with brain metastasis.
    Lu X; Gao C; Liu C; Zhuang J; Su P; Li H; Wang X; Sun C
    Pathol Res Pract; 2019 Aug; 215(8):152475. PubMed ID: 31178227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer.
    Cejalvo JM; Martínez de Dueñas E; Galván P; García-Recio S; Burgués Gasión O; Paré L; Antolín S; Martinello R; Blancas I; Adamo B; Guerrero-Zotano Á; Muñoz M; Nucíforo P; Vidal M; Pérez RM; Chacón López-Muniz JI; Caballero R; Peg V; Carrasco E; Rojo F; Perou CM; Cortés J; Adamo V; Albanell J; Gomis RR; Lluch A; Prat A
    Cancer Res; 2017 May; 77(9):2213-2221. PubMed ID: 28249905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes.
    Gatza ML; Kung HN; Blackwell KL; Dewhirst MW; Marks JR; Chi JT
    Breast Cancer Res; 2011 Jun; 13(3):R62. PubMed ID: 21672245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of key candidate genes, pathways and related prognostic values in ER-negative/HER2-negative breast cancer by bioinformatics analysis.
    Shao N; Yuan K; Zhang Y; Yun Cheang T; Li J; Lin Y
    J BUON; 2018; 23(4):891-901. PubMed ID: 30358191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of Gene Correlation Networks of Breast Cancer Patients Based on Mutations in TP53.
    Park B; Im J; Han K
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global [Formula: see text] gene co-expression network constructed from hundreds of experimental conditions with missing values.
    Kuang J; Buchon N; Michel K; Scoglio C
    BMC Bioinformatics; 2022 May; 23(1):170. PubMed ID: 35534830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening and Bioinformatics Analysis of Competitive Endogenous RNA Regulatory Network --Related to Circular RNA in Breast Cancer.
    Wang T; Zhang Y; He Y; Liu Y; Qi P
    Biomed Res Int; 2021; 2021():5575286. PubMed ID: 34545330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.