BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34381156)

  • 1. Identification of a pathway for electron uptake in Shewanella oneidensis.
    Rowe AR; Salimijazi F; Trutschel L; Sackett J; Adesina O; Anzai I; Kugelmass LH; Baym MH; Barstow B
    Commun Biol; 2021 Aug; 4(1):957. PubMed ID: 34381156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis.
    Starwalt-Lee R; El-Naggar MY; Bond DR; Gralnick JA
    Mol Microbiol; 2021 Jun; 115(6):1069-1079. PubMed ID: 33200455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Extracellular Electron Transfer by
    Dundas CM; Walker DJF; Keitz BK
    ACS Synth Biol; 2020 Sep; 9(9):2301-2315. PubMed ID: 32786362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the
    Baker IR; Conley BE; Gralnick JA; Girguis PR
    mBio; 2021 Feb; 13(1):e0290421. PubMed ID: 35100867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.
    Kondo K; Okamoto A; Hashimoto K; Nakamura R
    Langmuir; 2015 Jul; 31(26):7427-34. PubMed ID: 26070345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.
    Leung DHL; Lim YS; Uma K; Pan GT; Lin JH; Chong S; Yang TC
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1170-1186. PubMed ID: 33200267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism.
    Ross DE; Flynn JM; Baron DB; Gralnick JA; Bond DR
    PLoS One; 2011 Feb; 6(2):e16649. PubMed ID: 21311751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
    Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 16. Developing a PAM-Flexible CRISPR-Mediated Dual-Deaminase Base Editor to Regulate Extracellular Electron Transport in
    Wang T; Zhang J; Wei L; Zhao D; Bi C; Liu Q; Xu N; Liu J
    ACS Synth Biol; 2023 Jun; 12(6):1727-1738. PubMed ID: 37212667
    [No Abstract]   [Full Text] [Related]  

  • 17. Engineering a Native Inducible Expression System in Shewanella oneidensis to Control Extracellular Electron Transfer.
    West EA; Jain A; Gralnick JA
    ACS Synth Biol; 2017 Sep; 6(9):1627-1634. PubMed ID: 28562022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH dehydrogenases Nuo and Nqr1 contribute to extracellular electron transfer by Shewanella oneidensis MR-1 in bioelectrochemical systems.
    Madsen CS; TerAvest MA
    Sci Rep; 2019 Oct; 9(1):14959. PubMed ID: 31628378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular engineering to increase intracellular NAD(H/
    Li F; Li YX; Cao YX; Wang L; Liu CG; Shi L; Song H
    Nat Commun; 2018 Sep; 9(1):3637. PubMed ID: 30194293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.