BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34381964)

  • 1. Integrative omics analysis reveals effective stratification and potential prognosis markers of pan-gastrointestinal cancers.
    Jiangzhou H; Zhang H; Sun R; Fahira A; Wang K; Li Z; Shi Y; Wang Z
    iScience; 2021 Aug; 24(8):102824. PubMed ID: 34381964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.
    Tong D; Tian Y; Zhou T; Ye Q; Li J; Ding K; Li J
    BMC Med Inform Decis Mak; 2020 Feb; 20(1):22. PubMed ID: 32033604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Claudin-6 as a Molecular Biomarker in Pan-Cancer Through Multiple Omics Integrative Analysis.
    Zhang C; Guo C; Li Y; Liu K; Zhao Q; Ouyang L
    Front Cell Dev Biol; 2021; 9():726656. PubMed ID: 34409042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering.
    Crippa V; Malighetti F; Villa M; Graudenzi A; Piazza R; Mologni L; Ramazzotti D
    Comput Biol Med; 2023 Aug; 162():107064. PubMed ID: 37267828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types.
    Chang WH; Lai AG
    BMC Cancer; 2020 Aug; 20(1):773. PubMed ID: 32807122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
    Samorodnitsky S; Hoadley KA; Lock EF
    BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pan-cancer analysis of biological events on cell cycle instability in gastrointestinal cancers with integrative scoring method.
    Moravveji SS; Khoshbakht S; Mokhtari M; Salimi M; Masoudi-Nejad A
    Genomics; 2022 Jan; 114(1):253-265. PubMed ID: 34923090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oncogenic signaling pathway dysregulation landscape reveals the role of pathways at multiple omics levels in pan-cancer.
    Wang N; He DN; Wu ZY; Zhu X; Wen XL; Li XH; Guo Y; Wang HJ; Wang ZZ
    Front Genet; 2022; 13():916400. PubMed ID: 36061170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrointestinal pan-cancer landscape of tumor matrix heterogeneity identifies biologically distinct matrix stiffness subtypes predicting prognosis and chemotherapy efficacy.
    Ning Y; Lin K; Fang J; Ding Y; Zhang Z; Chen X; Zhao Q; Wang H; Wang F
    Comput Struct Biotechnol J; 2023; 21():2744-2758. PubMed ID: 37181656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Pan-Cancer Prognostic Biomarkers Through Integration of Multi-Omics Data.
    Zhao N; Guo M; Wang K; Zhang C; Liu X
    Front Bioeng Biotechnol; 2020; 8():268. PubMed ID: 32300588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative clustering methods for multi-omics data.
    Zhang X; Zhou Z; Xu H; Liu CT
    Wiley Interdiscip Rev Comput Stat; 2022; 14(3):. PubMed ID: 35573155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.
    Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG
    Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the classification of cancer cell lines from multiple omic views.
    Yang X; Wen Y; Song X; He S; Bo X
    PeerJ; 2020; 8():e9440. PubMed ID: 32874774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Pan-omics Data in Human Interactome Network (APODHIN).
    Biswas N; Kumar K; Bose S; Bera R; Chakrabarti S
    Front Genet; 2020; 11():589231. PubMed ID: 33363571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.