BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 34382192)

  • 1. Using Open Chromatin Enrichment and Network Hi-C (OCEAN-C) to Identify Open Chromatin Interactions.
    Jia L; Li C; Li T
    Methods Mol Biol; 2021; 2351():211-227. PubMed ID: 34382192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional Hubs Within Cliques in Ensemble Hi-C Chromatin Interaction Networks.
    Melkus G; Sizovs A; Rucevskis P; Silina S
    J Comput Biol; 2024 Jun; 31(6):589-596. PubMed ID: 38768423
    [No Abstract]   [Full Text] [Related]  

  • 3. Detecting hierarchical genome folding with network modularity.
    Norton HK; Emerson DJ; Huang H; Kim J; Titus KR; Gu S; Bassett DS; Phillips-Cremins JE
    Nat Methods; 2018 Feb; 15(2):119-122. PubMed ID: 29334377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATACdb: a comprehensive human chromatin accessibility database.
    Wang F; Bai X; Wang Y; Jiang Y; Ai B; Zhang Y; Liu Y; Xu M; Wang Q; Han X; Pan Q; Li Y; Li X; Zhang J; Zhao J; Zhang G; Feng C; Zhu J; Li C
    Nucleic Acids Res; 2021 Jan; 49(D1):D55-D64. PubMed ID: 33125076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning.
    Li W; Wong WH; Jiang R
    Nucleic Acids Res; 2019 Jun; 47(10):e60. PubMed ID: 30869141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C2c: Predicting Micro-C from Hi-C.
    Zhu H; Liu T; Wang Z
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the existence and functionality of topologically associating domains.
    Beagan JA; Phillips-Cremins JE
    Nat Genet; 2020 Jan; 52(1):8-16. PubMed ID: 31925403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin conformation signatures of cellular differentiation.
    Fraser J; Rousseau M; Shenker S; Ferraiuolo MA; Hayashizaki Y; Blanchette M; Dostie J
    Genome Biol; 2009; 10(4):R37. PubMed ID: 19374771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data.
    Ashoor H; Chen X; Rosikiewicz W; Wang J; Cheng A; Wang P; Ruan Y; Li S
    Nat Commun; 2020 Mar; 11(1):1173. PubMed ID: 32127534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and analysis of Hi-C data by HiSIF identifies characteristic promoter-distal loops.
    Zhou Y; Cheng X; Yang Y; Li T; Li J; Huang TH; Wang J; Lin S; Jin VX
    Genome Med; 2020 Aug; 12(1):69. PubMed ID: 32787954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HiCAR: Analysis of Open Chromatin Associated Long-range Chromatin Interaction Using Low-Input Materials.
    Wei X; Tran D; Diao Y
    Curr Protoc; 2023 Oct; 3(10):e899. PubMed ID: 37818863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R Tutorial: Detection of Differentially Interacting Chromatin Regions From Multiple Hi-C Datasets.
    Stansfield JC; Tran D; Nguyen T; Dozmorov MG
    Curr Protoc Bioinformatics; 2019 Jun; 66(1):e76. PubMed ID: 31125519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities.
    Singh R; Hie BL; Narayan A; Berger B
    Genome Biol; 2021 May; 22(1):131. PubMed ID: 33941239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic assessment of gene co-regulation within chromatin domains determines differentially active domains across human cancers.
    Zufferey M; Liu Y; Tavernari D; Mina M; Ciriello G
    Genome Biol; 2021 Aug; 22(1):218. PubMed ID: 34344431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.
    Cairns J; Freire-Pritchett P; Wingett SW; VĂ¡rnai C; Dimond A; Plagnol V; Zerbino D; Schoenfelder S; Javierre BM; Osborne C; Fraser P; Spivakov M
    Genome Biol; 2016 Jun; 17(1):127. PubMed ID: 27306882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hi-Tag: a simple and efficient method for identifying protein-mediated long-range chromatin interactions with low cell numbers.
    Qi X; Zhang L; Zhao Q; Zhou P; Zhang S; Li J; Zheng Z; Xiang Y; Dai X; Jin Z; Jian Y; Li X; Fu L; Zhao S
    Sci China Life Sci; 2024 May; 67(5):1027-1034. PubMed ID: 38280143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleome Browser: an integrative and multimodal data navigation platform for 4D Nucleome.
    Zhu X; Zhang Y; Wang Y; Tian D; Belmont AS; Swedlow JR; Ma J
    Nat Methods; 2022 Aug; 19(8):911-913. PubMed ID: 35864167
    [No Abstract]   [Full Text] [Related]  

  • 18. Topological isolation of developmental regulators in mammalian genomes.
    Wu HJ; Landshammer A; Stamenova EK; Bolondi A; Kretzmer H; Meissner A; Michor F
    Nat Commun; 2021 Aug; 12(1):4897. PubMed ID: 34385432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute depletion of CTCF rewires genome-wide chromatin accessibility.
    Xu B; Wang H; Wright S; Hyle J; Zhang Y; Shao Y; Niu M; Fan Y; Rosikiewicz W; Djekidel MN; Peng J; Lu R; Li C
    Genome Biol; 2021 Aug; 22(1):244. PubMed ID: 34429148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.