BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34382360)

  • 1. Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles.
    Evers MJW; van de Wakker SI; de Groot EM; de Jong OG; Gitz-François JJJ; Seinen CS; Sluijter JPG; Schiffelers RM; Vader P
    Adv Healthc Mater; 2022 Mar; 11(5):e2101202. PubMed ID: 34382360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic siRNA Loading of Extracellular Vesicles Enables Functional Delivery into Cells.
    Roerig J; Mitrach F; Schmid M; Hause G; Hacker MC; Wölk C; Schulz-Siegmund M
    Small Methods; 2022 Dec; 6(12):e2201001. PubMed ID: 36284470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Extracellular Vesicles Loaded with Therapeutic Cargo.
    Lamichhane TN; Jay SM
    Methods Mol Biol; 2018; 1831():37-47. PubMed ID: 30051423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles.
    O'Loughlin AJ; Mäger I; de Jong OG; Varela MA; Schiffelers RM; El Andaloussi S; Wood MJA; Vader P
    Mol Ther; 2017 Jul; 25(7):1580-1587. PubMed ID: 28392161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems.
    Piffoux M; Silva AKA; Wilhelm C; Gazeau F; Tareste D
    ACS Nano; 2018 Jul; 12(7):6830-6842. PubMed ID: 29975503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular vesicles as drug delivery systems: lessons from the liposome field.
    van der Meel R; Fens MH; Vader P; van Solinge WW; Eniola-Adefeso O; Schiffelers RM
    J Control Release; 2014 Dec; 195():72-85. PubMed ID: 25094032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design.
    Kooijmans SAA; de Jong OG; Schiffelers RM
    Adv Drug Deliv Rev; 2021 Jun; 173():252-278. PubMed ID: 33798644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization.
    van der Koog L; Gandek TB; Nagelkerke A
    Adv Healthc Mater; 2022 Mar; 11(5):e2100639. PubMed ID: 34165909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems - A commentary.
    Johnsen KB; Gudbergsson JM; Duroux M; Moos T; Andresen TL; Simonsen JB
    J Control Release; 2018 Jan; 269():10-14. PubMed ID: 29126999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-Coated Extracellular Vesicles for Selective Codelivery of Chemotherapeutics and siRNA to Cancer Cells.
    Jhan YY; Palou Zuniga G; Singh KA; Gaharwar AK; Alge DL; Bishop CJ
    ACS Appl Bio Mater; 2021 Feb; 4(2):1294-1306. PubMed ID: 35014481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Milk-derived Extracellular Vesicles for Therapeutic Delivery of Small Interfering RNAs.
    Matsuda A; Patel T
    Methods Mol Biol; 2018; 1740():187-197. PubMed ID: 29388145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery.
    Lamichhane TN; Raiker RS; Jay SM
    Mol Pharm; 2015 Oct; 12(10):3650-7. PubMed ID: 26376343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Challenges and Possibilities of Extracellular Vesicles as Therapeutic Vehicles.
    Melling GE; Carollo E; Conlon R; Simpson JC; Carter DRF
    Eur J Pharm Biopharm; 2019 Nov; 144():50-56. PubMed ID: 31419585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Hybrid Extracellular Vesicles by Fusion with Functionalized Liposomes.
    Piffoux M; Silva AKA; Gazeau F; Tareste D
    Methods Mol Biol; 2022; 2473():385-396. PubMed ID: 35819777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device.
    Itakura S; Shohji A; Amagai S; Kitamura M; Takayama K; Sugibayashi K; Todo H
    Sci Rep; 2023 Feb; 13(1):3102. PubMed ID: 36813850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular Vesicle-Based Hybrid Systems for Advanced Drug Delivery.
    Rodríguez DA; Vader P
    Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35214000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural or Synthetic RNA Delivery: A Stoichiometric Comparison of Extracellular Vesicles and Synthetic Nanoparticles.
    Murphy DE; de Jong OG; Evers MJW; Nurazizah M; Schiffelers RM; Vader P
    Nano Lett; 2021 Feb; 21(4):1888-1895. PubMed ID: 33570966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA.
    Spagnou S; Miller AD; Keller M
    Biochemistry; 2004 Oct; 43(42):13348-56. PubMed ID: 15491141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Isolation of siRNA-Loaded Extracellular Vesicles.
    Vader P; Mäger I; Lee Y; Nordin JZ; Andaloussi SE; Wood MJ
    Methods Mol Biol; 2017; 1545():197-204. PubMed ID: 27943216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular Vesicle Loading Via pH-Gradient Modification.
    Kronstadt SM; Jay SM; Jeyaram A
    Methods Mol Biol; 2022; 2504():231-239. PubMed ID: 35467291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.