These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34382368)

  • 1. Neuron-Inspired Steiner Tree Networks for 3D Low-Density Metastructures.
    Yu H; Zhang Q; Cumming BP; Goi E; Cole JH; Luan H; Chen X; Gu M
    Adv Sci (Weinh); 2021 Oct; 8(19):e2100141. PubMed ID: 34382368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three Dimensional Photonic Dirac Points in Metamaterials.
    Guo Q; Yang B; Xia L; Gao W; Liu H; Chen J; Xiang Y; Zhang S
    Phys Rev Lett; 2017 Nov; 119(21):213901. PubMed ID: 29219411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional direct laser writing of biomimetic neuron structures.
    Yu H; Zhang Q; Gu M
    Opt Express; 2018 Nov; 26(24):32111-32117. PubMed ID: 30650677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Realization of a three-dimensional photonic topological insulator.
    Yang Y; Gao Z; Xue H; Zhang L; He M; Yang Z; Singh R; Chong Y; Zhang B; Chen H
    Nature; 2019 Jan; 565(7741):622-626. PubMed ID: 30626966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Physarum-inspired approach to the Euclidean Steiner tree problem.
    Hsu S; Massolo FIS; Schaposnik LP
    Sci Rep; 2022 Aug; 12(1):14536. PubMed ID: 36008426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabricating 3D Metastructures by Simultaneous Modulation of Flexible Resist Stencils and Basal Molds.
    Cai H; Meng Q; Chen Q; Ding H; Dai Y; Li S; Chen D; Tan Q; Pan N; Zeng C; Qi Z; Liu G; Tian Y; Gao W; Wang X
    Adv Mater; 2020 Sep; 32(36):e2002570. PubMed ID: 32715527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological tissue-inspired tunable photonic fluid.
    Li X; Das A; Bi D
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6650-6655. PubMed ID: 29891685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in 2D, 3D and higher-order topological photonics.
    Kim M; Jacob Z; Rho J
    Light Sci Appl; 2020; 9():130. PubMed ID: 32704363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of topological surface-state arcs in photonic metamaterials.
    Yang B; Guo Q; Tremain B; Barr LE; Gao W; Liu H; Béri B; Xiang Y; Fan D; Hibbins AP; Zhang S
    Nat Commun; 2017 Jul; 8(1):97. PubMed ID: 28733654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability.
    Zhang M; Pal A; Zheng Z; Gardi G; Yildiz E; Sitti M
    Nat Mater; 2023 Oct; 22(10):1243-1252. PubMed ID: 37604911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of Three-Dimensional Photonic Dirac Points and Spin-Polarized Surface Arcs.
    Guo Q; You O; Yang B; Sellman JB; Blythe E; Liu H; Xiang Y; Li J; Fan D; Chen J; Chan CT; Zhang S
    Phys Rev Lett; 2019 May; 122(20):203903. PubMed ID: 31172768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering and Experimental Realization of Multimodal 3D Topological Metamaterials for Low-Frequency and Multiband Elastic Wave Control.
    Dorin P; Khan M; Wang KW
    Adv Sci (Weinh); 2023 Oct; 10(30):e2304793. PubMed ID: 37664881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological transformability and reprogrammability of multistable mechanical metamaterials.
    Xiu H; Liu H; Poli A; Wan G; Sun K; Arruda EM; Mao X; Chen Z
    Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2211725119. PubMed ID: 36534795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing perturbative metamaterials from discrete models.
    Matlack KH; Serra-Garcia M; Palermo A; Huber SD; Daraio C
    Nat Mater; 2018 Apr; 17(4):323-328. PubMed ID: 29335611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning.
    Sun Y; Hameed PN; Verspoor K; Halgamuge S
    BMC Syst Biol; 2016 Dec; 10(Suppl 5):128. PubMed ID: 28105946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature-inspired entwined coiled carbon mechanical metamaterials: molecular dynamics simulations.
    Wu J; Shi Q; Zhang Z; Wu HH; Wang C; Ning F; Xiao S; He J; Zhang Z
    Nanoscale; 2018 Aug; 10(33):15641-15653. PubMed ID: 30091442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Auxetic Metamaterials with Elastically-Stable Continuous Phase Transition.
    Wang L; Ulliac G; Wang B; Iglesias Martínez JA; Dudek KK; Laude V; Kadic M
    Adv Sci (Weinh); 2022 Dec; 9(34):e2204721. PubMed ID: 36257832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printed Biomimetic Metamaterials with Graded Porosity and Tapering Topology for Improved Cell Seeding and Bone Regeneration.
    Zhang L; Wang B; Song B; Yao Y; Choi SK; Yang C; Shi Y
    Bioact Mater; 2023 Jul; 25():677-688. PubMed ID: 37056269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetoactive Acoustic Metamaterials.
    Yu K; Fang NX; Huang G; Wang Q
    Adv Mater; 2018 May; 30(21):e1706348. PubMed ID: 29638017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.