These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34382760)
21. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester. Gupta MK; Kim SW; Kumar B ACS Appl Mater Interfaces; 2016 Jan; 8(3):1766-73. PubMed ID: 26735739 [TBL] [Abstract][Full Text] [Related]
22. Novel Thermal Diffusion Temperature Engineering Leading to High Thermoelectric Performance in Bi Ao DW; Liu WD; Chen YX; Wei M; Jabar B; Li F; Shi XL; Zheng ZH; Liang GX; Zhang XH; Fan P; Chen ZG Adv Sci (Weinh); 2022 Feb; 9(5):e2103547. PubMed ID: 34939357 [TBL] [Abstract][Full Text] [Related]
23. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. Kang HB; Chang J; Koh K; Lin L; Cho YS ACS Appl Mater Interfaces; 2014 Jul; 6(13):10576-82. PubMed ID: 24919853 [TBL] [Abstract][Full Text] [Related]
24. Coupling of PZT Thin Films with Bimetallic Strip Heat Engines for Thermal Energy Harvesting. Boughaleb J; Arnaud A; Guiffard B; Guyomar D; Seveno R; Monfray S; Skotnicki T; Cottinet PJ Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29882829 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of Lead-Free Bi Christensen M; Einarsrud MA; Grande T Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772576 [TBL] [Abstract][Full Text] [Related]
26. Piezoelectricity and Biocompatibility of Flexible Sc Algieri L; Todaro MT; Guido F; Blasi L; Mastronardi V; Desmaële D; Qualtieri A; Giannini C; Sibillano T; De Vittorio M ACS Appl Mater Interfaces; 2020 Apr; 12(16):18660-18666. PubMed ID: 32216304 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films. Laurenti M; Stassi S; Lorenzoni M; Fontana M; Canavese G; Cauda V; Pirri CF Nanotechnology; 2015 May; 26(21):215704. PubMed ID: 25943118 [TBL] [Abstract][Full Text] [Related]
28. Microscopic Insight into Electric Fatigue Resistance and Thermally Stable Piezoelectric Properties of (K,Na)NbO Li P; Chen X; Wang F; Shen B; Zhai J; Zhang S; Zhou Z ACS Appl Mater Interfaces; 2018 Aug; 10(34):28772-28779. PubMed ID: 30084255 [TBL] [Abstract][Full Text] [Related]
29. Textured Lead-Free Piezoelectric Ceramics for Flexible Energy Harvesters. Purusothaman Y; Leng H; Nanda A; Levine I; Priya S ACS Appl Mater Interfaces; 2023 Feb; 15(5):6584-6593. PubMed ID: 36692991 [TBL] [Abstract][Full Text] [Related]
30. High-Performance 0-3 Type Niobate-Based Lead-Free Piezoelectric Composite Ceramics with ZnO Inclusions. Lv X; Li J; Men TL; Wu J; Zhang XX; Wang K; Li JF; Xiao D; Zhu J ACS Appl Mater Interfaces; 2018 Sep; 10(36):30566-30573. PubMed ID: 30107108 [TBL] [Abstract][Full Text] [Related]
31. Low-Temperature Growth of ZnO Nanowires from Gravure-Printed ZnO Nanoparticle Seed Layers for Flexible Piezoelectric Devices. Garcia AJL; Sico G; Montanino M; Defoor V; Pusty M; Mescot X; Loffredo F; Villani F; Nenna G; Ardila G Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071555 [TBL] [Abstract][Full Text] [Related]
32. Composition Regulation of Potassium Sodium Niobate Thin Films through Post-Annealing under Alkali Element Atmospheres. Chen B; Tao C; Fan W; Shen B; Ju M; Dou Z; Wu C; Yao FZ; Gong W; Wang K Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334559 [TBL] [Abstract][Full Text] [Related]
33. Pairing High Piezoelectric Coefficients, d Rafiq MA; Costa ME; Vilarinho PM ACS Appl Mater Interfaces; 2016 Dec; 8(49):33755-33764. PubMed ID: 27805361 [TBL] [Abstract][Full Text] [Related]
34. Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication. Jiang L; Wu B; Wei X; Lv X; Xue H; Lu G; Zeng Y; Xing J; Wu W; Wu J Mater Horiz; 2022 Aug; 9(8):2180-2190. PubMed ID: 35686946 [TBL] [Abstract][Full Text] [Related]
35. High Piezoelectric Performance of KNN-Based Ceramics over a Broad Temperature Range through Crystal Orientation and Multilayer Engineering. Lu G; Li Y; Zhao R; Zhao Y; Zhao J; Bai W; Zhai J; Li P Molecules; 2024 Sep; 29(19):. PubMed ID: 39407531 [TBL] [Abstract][Full Text] [Related]
37. Nanointerfacial Layer Effect on Dielectric and Piezoelectric Responses in Chemical Solution-Derived Lead-Free Alkaline Niobate-Based Thin Films. Won SS; Kawahara M; Kim H; Lee J; Jeong CK; Kingon AI; Kim SH ACS Appl Mater Interfaces; 2021 May; 13(18):22047-22058. PubMed ID: 33929815 [TBL] [Abstract][Full Text] [Related]
38. Feasible Way to Achieve Multifunctional (K, Na)NbO Zhang N; Lv X; Zhang XX; Cui A; Hu Z; Wu J ACS Appl Mater Interfaces; 2021 Dec; 13(50):60227-60240. PubMed ID: 34902965 [TBL] [Abstract][Full Text] [Related]
39. High-performance piezoelectric energy harvesting in amorphous perovskite thin films deposited directly on a plastic substrate. Han J; Park SH; Jung YS; Cho YS Nat Commun; 2024 May; 15(1):4129. PubMed ID: 38755193 [TBL] [Abstract][Full Text] [Related]
40. Ultrathin Ceramic Piezoelectric Films via Room-Temperature Electrospray Deposition of ZnO Nanoparticles for Printed GHz Devices. García-Farrera B; Velásquez-García LF ACS Appl Mater Interfaces; 2019 Aug; 11(32):29167-29176. PubMed ID: 31381298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]