BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34382797)

  • 1. Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden-Meyerhof-Parnas-Pathway Gene Deletion in
    Yuan X; Mao Y; Tu S; Lin J; Shen H; Yang L; Wu M
    J Agric Food Chem; 2021 Aug; 69(33):9625-9631. PubMed ID: 34382797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of xylitol by the integration of multiple copies of xylose reductase gene and the deletion of Embden-Meyerhof-Parnas pathway-associated genes to enhance NADPH regeneration in Escherichia coli.
    Yuan X; Wang J; Lin J; Yang L; Wu M
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1061-1069. PubMed ID: 31025135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates.
    Yuan X; Tu S; Lin J; Yang L; Shen H; Wu M
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2039-2050. PubMed ID: 31950219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations.
    Chin JW; Cirino PC
    Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.
    Seol E; Sekar BS; Raj SM; Park S
    Biotechnol J; 2016 Feb; 11(2):249-56. PubMed ID: 26581029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q
    Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically Engineering
    Yuan X; Cao J; Wang R; Han Y; Zhu J; Lin J; Yang L; Wu M
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
    Jeppsson M; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2002 Apr; 68(4):1604-9. PubMed ID: 11916674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli.
    Kamata K; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of glycolysis and its effect on the production of L-threonine in Escherichia coli.
    Xie X; Liang Y; Liu H; Liu Y; Xu Q; Zhang C; Chen N
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):1007-15. PubMed ID: 24671569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport.
    Siedler S; Bringer S; Blank LM; Bott M
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1459-67. PubMed ID: 22002070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.
    Jojima T; Igari T; Noburyu R; Watanabe A; Suda M; Inui M
    Biotechnol Biofuels; 2021 Feb; 14(1):45. PubMed ID: 33593398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli.
    Li S; Ye Z; Moreb EA; Hennigan JN; Castellanos DB; Yang T; Lynch MD
    Metab Eng; 2021 Mar; 64():26-40. PubMed ID: 33460820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.