BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34382797)

  • 21. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae.
    Reshamwala SMS; Lali AM
    Biotechnol Prog; 2020 May; 36(3):e2972. PubMed ID: 31990139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway.
    Ahmad I; Shim WY; Jeon WY; Yoon BH; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):199-204. PubMed ID: 21969058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli.
    Su B; Wu M; Zhang Z; Lin J; Yang L
    Metab Eng; 2015 Sep; 31():112-22. PubMed ID: 26197036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switch on a more efficient pyruvate synthesis pathway based on transcriptome analysis and metabolic evolution.
    Yang M; Chen R; Mu T; Zhang X; Xing J
    J Biosci Bioeng; 2017 Nov; 124(5):523-527. PubMed ID: 28669527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.
    Jo JH; Oh SY; Lee HS; Park YC; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multisite Mutation of the
    Yuan D; Liu B; Yuan X; Feng L; Xu X; Zhu J; Chen Z; Xu R; Chen J; Xu G; Lin J; Yang L; Li M; Lian J; Wu M
    J Agric Food Chem; 2023 Nov; ():. PubMed ID: 37921650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains.
    Wang Y; San KY; Bennett GN
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6883-93. PubMed ID: 23558585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues.
    He Y; Li H; Chen L; Zheng L; Ye C; Hou J; Bao X; Liu W; Shen Y
    Microb Biotechnol; 2021 Sep; 14(5):2059-2071. PubMed ID: 34255428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding.
    Hibi M; Yukitomo H; Ito M; Mori H
    Appl Environ Microbiol; 2007 Dec; 73(23):7657-63. PubMed ID: 17921263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
    Ma W; Wang J; Li Y; Hu X; Shi F; Wang X
    Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.
    Ma K; Hu G; Pan L; Wang Z; Zhou Y; Wang Y; Ruan Z; He M
    Bioresour Technol; 2016 Nov; 219():114-122. PubMed ID: 27479802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.
    Su B; Zhang Z; Wu M; Lin J; Yang L
    Sci Rep; 2016 May; 6():26567. PubMed ID: 27225023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway.
    Zhang J; Zhang B; Wang D; Gao X; Sun L; Hong J
    Metab Eng; 2015 Sep; 31():140-52. PubMed ID: 26253204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.
    Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA
    Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.
    Lee WH; Chin YW; Han NS; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose.
    Wu J; Hu J; Zhao S; He M; Hu G; Ge X; Peng N
    Appl Biochem Biotechnol; 2018 May; 185(1):163-178. PubMed ID: 29098561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Xylitol Production from Cornstalk Hydrolysate Using Engineered Escherichia coli Whole Cells.
    Chang Z; Liu D; Yang Z; Wu J; Zhuang W; Niu H; Ying H
    J Agric Food Chem; 2018 Dec; 66(50):13209-13216. PubMed ID: 30465421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.