These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34382797)

  • 41. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob.
    Cheng KK; Wu J; Lin ZN; Zhang JA
    Biotechnol Biofuels; 2014; 7(1):166. PubMed ID: 25431622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by Meyerozyma caribbica.
    Nagarajan A; Thulasinathan B; Arivalagan P; Alagarsamy A; Muthuramalingam JB; Thangarasu SD; Thangavel K
    Bioresour Technol; 2021 Nov; 340():125677. PubMed ID: 34358990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures.
    Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L
    Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans.
    Li S; Zhang J; Xu H; Feng X
    J Agric Food Chem; 2016 Feb; 64(5):1144-50. PubMed ID: 26727541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate.
    Sun J; Wang J; Tian K; Dong Z; Liu X; Permaul K; Singh S; Prior BA; Wang Z
    Biotechnol Lett; 2018 May; 40(5):781-788. PubMed ID: 29564679
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus.
    Zhang B; Zhang J; Wang D; Han R; Ding R; Gao X; Sun L; Hong J
    Bioresour Technol; 2016 Sep; 216():227-37. PubMed ID: 27240239
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains.
    Bettiga M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Biofuels; 2008 Oct; 1(1):16. PubMed ID: 18947407
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparative analysis of NADPH supply strategies in
    Regmi P; Knesebeck M; Boles E; Weuster-Botz D; Oreb M
    Metab Eng Commun; 2024 Dec; 19():e00245. PubMed ID: 39072283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
    Akinterinwa O; Cirino PC
    Appl Environ Microbiol; 2011 Jan; 77(2):706-9. PubMed ID: 21097593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars.
    Dhar KS; Wendisch VF; Nampoothiri KM
    J Biotechnol; 2016 Jul; 230():63-71. PubMed ID: 27184428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of kenaf stem hemicellulosic hydrolysate and its fermentability in microbial production of xylitol by Escherichia coli BL21.
    Shah SSM; Luthfi AAI; Low KO; Harun S; Manaf SFA; Illias RM; Jahim JM
    Sci Rep; 2019 Mar; 9(1):4080. PubMed ID: 30858467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor.
    Kwon SG; Park SW; Oh DK
    J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli.
    Kim YM; Cho HS; Jung GY; Park JM
    Biotechnol Bioeng; 2011 Dec; 108(12):2941-6. PubMed ID: 21732330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.
    Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J
    FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system.
    Ren L; Liu Y; Xia Y; Huang Y; Liu Y; Wang Y; Li P; Chang K; Xu D; Li F; Zhang B
    Bioresour Technol; 2022 Dec; 365():128179. PubMed ID: 36283669
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC; Chin JW; Ingram LO
    Biotechnol Bioeng; 2006 Dec; 95(6):1167-76. PubMed ID: 16838379
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing intracellular NADPH bioavailability through improving pentose phosphate pathway flux and its application in biocatalysis asymmetric reduction reaction.
    Yuan L; Qin YL; Zou ZC; Appiah B; Huang H; Yang ZH; Qun C
    J Biosci Bioeng; 2022 Dec; 134(6):528-533. PubMed ID: 36224065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18.
    Zhang J; Geng A; Yao C; Lu Y; Li Q
    Bioresour Technol; 2012 Feb; 105():134-41. PubMed ID: 22196071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase.
    Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y
    Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.