These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1385 related articles for article (PubMed ID: 34382940)
1. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
2. Risk Factors and Predictive Models for Peripherally Inserted Central Catheter Unplanned Extubation in Patients With Cancer: Prospective, Machine Learning Study. Zhang J; Ma G; Peng S; Hou J; Xu R; Luo L; Hu J; Yao N; Wang J; Huang X J Med Internet Res; 2023 Nov; 25():e49016. PubMed ID: 37971792 [TBL] [Abstract][Full Text] [Related]
3. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units. Hsieh MH; Hsieh MJ; Chen CM; Hsieh CC; Chao CM; Lai CC Sci Rep; 2018 Nov; 8(1):17116. PubMed ID: 30459331 [TBL] [Abstract][Full Text] [Related]
4. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
5. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related]
6. A Machine Learning-Based Algorithm for the Prediction of Intensive Care Unit Delirium (PRIDE): Retrospective Study. Hur S; Ko RE; Yoo J; Ha J; Cha WC; Chung CR JMIR Med Inform; 2021 Jul; 9(7):e23401. PubMed ID: 34309567 [TBL] [Abstract][Full Text] [Related]
7. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
8. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis. Pattharanitima P; Thongprayoon C; Kaewput W; Qureshi F; Qureshi F; Petnak T; Srivali N; Gembillo G; O'Corragain OA; Chesdachai S; Vallabhajosyula S; Guru PK; Mao MA; Garovic VD; Dillon JJ; Cheungpasitporn W J Clin Med; 2021 Oct; 10(21):. PubMed ID: 34768540 [TBL] [Abstract][Full Text] [Related]
10. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
11. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
12. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
13. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862 [TBL] [Abstract][Full Text] [Related]
14. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. Desautels T; Das R; Calvert J; Trivedi M; Summers C; Wales DJ; Ercole A BMJ Open; 2017 Sep; 7(9):e017199. PubMed ID: 28918412 [TBL] [Abstract][Full Text] [Related]
15. Prediction of extubation failure in the paediatric cardiac ICU using machine learning and high-frequency physiologic data. Rooney SR; Reynolds EL; Banerjee M; Pasquali SK; Charpie JR; Gaies MG; Owens GE Cardiol Young; 2022 Oct; 32(10):1649-1656. PubMed ID: 34924086 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning for Prediction of Successful Extubation of Mechanical Ventilated Patients in an Intensive Care Unit: A Retrospective Observational Study. Otaguro T; Tanaka H; Igarashi Y; Tagami T; Masuno T; Yokobori S; Matsumoto H; Ohwada H; Yokota H J Nippon Med Sch; 2021 Nov; 88(5):408-417. PubMed ID: 33692291 [TBL] [Abstract][Full Text] [Related]
17. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
18. Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study. Nanayakkara S; Fogarty S; Tremeer M; Ross K; Richards B; Bergmeir C; Xu S; Stub D; Smith K; Tacey M; Liew D; Pilcher D; Kaye DM PLoS Med; 2018 Nov; 15(11):e1002709. PubMed ID: 30500816 [TBL] [Abstract][Full Text] [Related]
19. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309 [TBL] [Abstract][Full Text] [Related]
20. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]