BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 34383147)

  • 1. Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance.
    Kerschke L; Weigel S; Rodriguez-Ruiz A; Karssemeijer N; Heindel W
    Eur Radiol; 2022 Feb; 32(2):842-852. PubMed ID: 34383147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of artificial intelligence in 7533 consecutive prevalent screening mammograms from the BreastScreen Australia program.
    Waugh J; Evans J; Miocevic M; Lockie D; Aminzadeh P; Lynch A; Bell RJ
    Eur Radiol; 2024 Jun; 34(6):3947-3957. PubMed ID: 37955669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of real-life use of artificial intelligence as support for human reading in a population-based breast cancer screening program with mammography and tomosynthesis.
    Elías-Cabot E; Romero-Martín S; Raya-Povedano JL; Brehl AK; Álvarez-Benito M
    Eur Radiol; 2024 Jun; 34(6):3958-3966. PubMed ID: 37975920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study.
    Lång K; Josefsson V; Larsson AM; Larsson S; Högberg C; Sartor H; Hofvind S; Andersson I; Rosso A
    Lancet Oncol; 2023 Aug; 24(8):936-944. PubMed ID: 37541274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arbitration of discrepant BI-RADS 0 recalls by a third reader at screening mammography lowers recall rate but not the cancer detection rate and sensitivity at blinded and non-blinded double reading.
    Klompenhouwer EG; Weber RJ; Voogd AC; den Heeten GJ; Strobbe LJ; Broeders MJ; Tjan-Heijnen VC; Duijm LE
    Breast; 2015 Oct; 24(5):601-7. PubMed ID: 26117723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study.
    Kim YS; Jang MJ; Lee SH; Kim SY; Ha SM; Kwon BR; Moon WK; Chang JM
    Korean J Radiol; 2022 Dec; 23(12):1241-1250. PubMed ID: 36447412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast cancer detection accuracy of AI in an entire screening population: a retrospective, multicentre study.
    Elhakim MT; Stougaard SW; Graumann O; Nielsen M; Lång K; Gerke O; Larsen LB; Rasmussen BSB
    Cancer Imaging; 2023 Dec; 23(1):127. PubMed ID: 38124111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population-wide evaluation of artificial intelligence and radiologist assessment of screening mammograms.
    Kühl J; Elhakim MT; Stougaard SW; Rasmussen BSB; Nielsen M; Gerke O; Larsen LB; Graumann O
    Eur Radiol; 2024 Jun; 34(6):3935-3946. PubMed ID: 37938386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AI-based Strategies to Reduce Workload in Breast Cancer Screening with Mammography and Tomosynthesis: A Retrospective Evaluation.
    Raya-Povedano JL; Romero-Martín S; Elías-Cabot E; Gubern-Mérida A; Rodríguez-Ruiz A; Álvarez-Benito M
    Radiology; 2021 Jul; 300(1):57-65. PubMed ID: 33944627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study.
    Rodriguez-Ruiz A; Lång K; Gubern-Merida A; Teuwen J; Broeders M; Gennaro G; Clauser P; Helbich TH; Chevalier M; Mertelmeier T; Wallis MG; Andersson I; Zackrisson S; Sechopoulos I; Mann RM
    Eur Radiol; 2019 Sep; 29(9):4825-4832. PubMed ID: 30993432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload.
    Lauritzen AD; Rodríguez-Ruiz A; von Euler-Chelpin MC; Lynge E; Vejborg I; Nielsen M; Karssemeijer N; Lillholm M
    Radiology; 2022 Jul; 304(1):41-49. PubMed ID: 35438561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detection.
    Marinovich ML; Wylie E; Lotter W; Lund H; Waddell A; Madeley C; Pereira G; Houssami N
    EBioMedicine; 2023 Apr; 90():104498. PubMed ID: 36863255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast cancer screening with digital breast tomosynthesis: comparison of different reading strategies implementing artificial intelligence.
    Dahlblom V; Dustler M; Tingberg A; Zackrisson S
    Eur Radiol; 2023 May; 33(5):3754-3765. PubMed ID: 36502459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence assistance for women who had spot compression view: reducing recall rates for digital mammography.
    Lee SE; Kim GR; Yoon JH; Han K; Son WJ; Shin HJ; Moon HJ
    Acta Radiol; 2023 May; 64(5):1808-1815. PubMed ID: 36426409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of novel artificial intelligence computer-assisted detection (AI-CAD) for screening mammography: an analysis of 17,884 consecutive two-view full-field digital mammography screening exams.
    Heywang-Köbrunner SH; Hacker A; Jänsch A; Hertlein M; Mieskes C; Elsner S; Sinnatamby R; Katalinic A
    Acta Radiol; 2023 Oct; 64(10):2697-2703. PubMed ID: 37642981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study.
    Lee JH; Kim KH; Lee EH; Ahn JS; Ryu JK; Park YM; Shin GW; Kim YJ; Choi HY
    Korean J Radiol; 2022 May; 23(5):505-516. PubMed ID: 35434976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrepant screening mammography assessments at blinded and non-blinded double reading: impact of arbitration by a third reader on screening outcome.
    Klompenhouwer EG; Voogd AC; den Heeten GJ; Strobbe LJ; Tjan-Heijnen VC; Broeders MJ; Duijm LE
    Eur Radiol; 2015 Oct; 25(10):2821-9. PubMed ID: 25894007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying normal mammograms in a large screening population using artificial intelligence.
    Lång K; Dustler M; Dahlblom V; Åkesson A; Andersson I; Zackrisson S
    Eur Radiol; 2021 Mar; 31(3):1687-1692. PubMed ID: 32876835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can artificial intelligence reduce the interval cancer rate in mammography screening?
    Lång K; Hofvind S; Rodríguez-Ruiz A; Andersson I
    Eur Radiol; 2021 Aug; 31(8):5940-5947. PubMed ID: 33486604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-vendor evaluation of artificial intelligence as an independent reader for double reading in breast cancer screening on 275,900 mammograms.
    Sharma N; Ng AY; James JJ; Khara G; Ambrózay É; Austin CC; Forrai G; Fox G; Glocker B; Heindl A; Karpati E; Rijken TM; Venkataraman V; Yearsley JE; Kecskemethy PD
    BMC Cancer; 2023 May; 23(1):460. PubMed ID: 37208717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.