These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3438348)

  • 41. Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production.
    Schäfer M; Schmitz C; Facius R; Horneck G; Milow B; Funken KH; Ortner J
    Photochem Photobiol; 2000 May; 71(5):514-23. PubMed ID: 10818781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The photodynamic effect of rose bengal on proteins of the mitochondrial inner membrane.
    Giulivi C; Sarcansky M; Rosenfeld E; Boveris A
    Photochem Photobiol; 1990 Oct; 52(4):745-51. PubMed ID: 2089421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methylene blue and rose bengal photoinactivation of RNA bacteriophages: comparative studies of 8-oxoguanine formation in isolated RNA.
    Schneider JE; Phillips JR; Pye Q; Maidt ML; Price S; Floyd RA
    Arch Biochem Biophys; 1993 Feb; 301(1):91-7. PubMed ID: 8382909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phototoxic potential of quinolones.
    Cárdenas AM; Vargas F; Fernández E; Hidalgo ME
    J Photochem Photobiol B; 1991 Aug; 10(3):249-55. PubMed ID: 1663996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Singlet oxygen interaction with Ca(2+)-ATPase of cardiac sarcoplasmic reticulum.
    Kukreja RC; Kearns AA; Zweier JL; Kuppusamy P; Hess ML
    Circ Res; 1991 Oct; 69(4):1003-14. PubMed ID: 1657435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Some prevalent biomolecules as defenses against singlet oxygen damage.
    Dahl TA; Midden WR; Hartman PE
    Photochem Photobiol; 1988 Mar; 47(3):357-62. PubMed ID: 3380891
    [No Abstract]   [Full Text] [Related]  

  • 47. Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-hydroxypropyl)methacrylamide copolymers.
    Spikes JD; Shen HR; Kopecková P; Kopecek J
    Photochem Photobiol; 1999 Aug; 70(2):130-7. PubMed ID: 10461454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Singlet oxygen mediates the activation of JNK by UVA radiation in human skin fibroblasts.
    Klotz LO; Briviba K; Sies H
    FEBS Lett; 1997 May; 408(3):289-91. PubMed ID: 9188778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Limited cell-cycle dependence of the merocyanine 540-sensitized photoinactivation of L1210 leukemia cells.
    Qiu K; Traul DL; Sieber F
    Photochem Photobiol; 1992 Aug; 56(2):277-80. PubMed ID: 1502271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxygen-independent photocleavage of DNA by xanthene dyes.
    Kobayashi M; Miyama S; Komiyama M
    Nucleic Acids Symp Ser; 1992; (27):31-2. PubMed ID: 1337790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow.
    Heugebaert TS; Stevens CV; Kappe CO
    ChemSusChem; 2015 May; 8(10):1648-51. PubMed ID: 25505009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Merocyanine 540-sensitized photoinactivation of leukemia cells: effects of dose fractionation.
    Qiu K; Sieber F
    Photochem Photobiol; 1992 Oct; 56(4):489-93. PubMed ID: 1454878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal.
    Ishibashi T; Lee CI; Okabe E
    J Pharmacol Exp Ther; 1996 Apr; 277(1):350-8. PubMed ID: 8613941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The photochemical properties of fluoroaluminum phthalocyanine.
    Rosenthal I; Shafirovich VY; Geacintov NE; Ben-Hur E; Horowitz B
    Photochem Photobiol; 1994 Sep; 60(3):215-20. PubMed ID: 7972371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergy between cell-penetrating peptides and singlet oxygen generators leads to efficient photolysis of membranes.
    Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Photochem Photobiol; 2013; 89(3):625-30. PubMed ID: 23278754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photophysics and photochemistry of rose bengal bound to human serum albumin.
    Alarcón E; Edwards AM; Aspée A; Borsarelli CD; Lissi EA
    Photochem Photobiol Sci; 2009 Jul; 8(7):933-43. PubMed ID: 19582268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photodynamic inactivation of an ion channel: gramicidin A.
    Strässle M; Stark G
    Photochem Photobiol; 1992 Mar; 55(3):461-3. PubMed ID: 1373241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of merocyanine 540-sensitized photoirradiation as a means to inactivate enveloped viruses in blood products.
    O'Brien JM; Montgomery RR; Burns WH; Gaffney DK; Sieber F
    J Lab Clin Med; 1990 Oct; 116(4):439-47. PubMed ID: 2170551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal.
    Banks JG; Board RG; Carter J; Dodge AD
    J Appl Bacteriol; 1985 Apr; 58(4):391-400. PubMed ID: 3997691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves.
    Hideg E; Kós PB; Vass I
    Physiol Plant; 2007 Sep; 131(1):33-40. PubMed ID: 18251922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.