These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 34383745)

  • 1. The native cistrome and sequence motif families of the maize ear.
    Savadel SD; Hartwig T; Turpin ZM; Vera DL; Lung PY; Sui X; Blank M; Frommer WB; Dennis JH; Zhang J; Bass HW
    PLoS Genet; 2021 Aug; 17(8):e1009689. PubMed ID: 34383745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection.
    Yardımcı GG; Frank CL; Crawford GE; Ohler U
    Nucleic Acids Res; 2014 Oct; 42(19):11865-78. PubMed ID: 25294828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome.
    Hansen TJ; Hodges E
    Genome Res; 2022 Aug; 32(8):1529-1541. PubMed ID: 35858748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data.
    Schultheis H; Bentsen M; Heger V; Looso M
    Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize.
    Vera DL; Madzima TF; Labonne JD; Alam MP; Hoffman GG; Girimurugan SB; Zhang J; McGinnis KM; Dennis JH; Bass HW
    Plant Cell; 2014 Oct; 26(10):3883-93. PubMed ID: 25361955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data.
    Piper J; Elze MC; Cauchy P; Cockerill PN; Bonifer C; Ott S
    Nucleic Acids Res; 2013 Nov; 41(21):e201. PubMed ID: 24071585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the accessible chromatin regions in six tissues in the soybean.
    Huang M; Zhang L; Zhou L; Yung WS; Wang Z; Xiao Z; Wang Q; Wang X; Li MW; Lam HM
    Genomics; 2022 May; 114(3):110364. PubMed ID: 35421559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; Gutiérrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain.
    Handel AE; Gallone G; Zameel Cader M; Ponting CP
    Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChIPSummitDB: a ChIP-seq-based database of human transcription factor binding sites and the topological arrangements of the proteins bound to them.
    Czipa E; Schiller M; Nagy T; Kontra L; Steiner L; Koller J; Pálné-Szén O; Barta E
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 31942977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling.
    Karabacak Calviello A; Hirsekorn A; Wurmus R; Yusuf D; Ohler U
    Genome Biol; 2019 Feb; 20(1):42. PubMed ID: 30791920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid allele-specific ChIP-seq analysis identifies variation in brassinosteroid-responsive transcription factor binding linked to traits in maize.
    Hartwig T; Banf M; Prietsch GP; Zhu JY; Mora-Ramírez I; Schippers JHM; Snodgrass SJ; Seetharam AS; Huettel B; Kolkman JM; Yang J; Engelhorn J; Wang ZY
    Genome Biol; 2023 May; 24(1):108. PubMed ID: 37158941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATAC-Seq Reveals the Landscape of Open Chromatin and 
    Zhang Z; Lin L; Chen H; Ye W; Dong S; Zheng X; Wang Y
    Mol Plant Microbe Interact; 2022 Apr; 35(4):301-310. PubMed ID: 35037783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRACE: transcription factor footprinting using chromatin accessibility data and DNA sequence.
    Ouyang N; Boyle AP
    Genome Res; 2020 Jul; 30(7):1040-1046. PubMed ID: 32660981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation.
    Bentsen M; Goymann P; Schultheis H; Klee K; Petrova A; Wiegandt R; Fust A; Preussner J; Kuenne C; Braun T; Kim J; Looso M
    Nat Commun; 2020 Aug; 11(1):4267. PubMed ID: 32848148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.