These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34383831)

  • 1. High-gain observer-based nonlinear control scheme for biomechanical sit to stand movement in the presence of sensory feedback delays.
    Sultan N; Mughal AM; Islam MNU; Malik FM
    PLoS One; 2021; 16(8):e0256049. PubMed ID: 34383831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear postural control paradigm for larger perturbations in the presence of neural delays.
    Sultan N; Najam Ul Islam M; Mughal AM
    Biol Cybern; 2021 Aug; 115(4):397-414. PubMed ID: 34373936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartesian Control of Sit-to-Stand Motion Using Head Position Feedback.
    Rafique S; Najam-Ul-Islam M; Shafique M; Mahmood A
    Appl Bionics Biomech; 2020; 2020():1979342. PubMed ID: 32904422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic analysis of the human body during sit-to-stand in healthy young adults.
    Li J; Xue Q; Yang S; Han X; Zhang S; Li M; Guo J
    Medicine (Baltimore); 2021 Jun; 100(22):e26208. PubMed ID: 34087893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stand-to-sit kinematic changes during pregnancy correspond with reduced sagittal plane hip motion.
    Catena RD; Bailey JP; Campbell N; Music HE
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():107-114. PubMed ID: 31100701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of movement speed on lower and upper body biomechanics during sit-to-stand-to-sit transfers: Self-selected speed vs. fast imposed speed.
    Wang J; Severin AC; Siddicky SF; Barnes CL; Mannen EM
    Hum Mov Sci; 2021 Jun; 77():102797. PubMed ID: 33848920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Ankle Muscle Dynamics during the STS Process Based on Wearable Sensors.
    Liu K; Ji S; Liu Y; Gao C; Zhang S; Fu J; Dai L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of sit-to-stand in typically developing children aged 4 to 12 years: Movement time, trunk and lower extremity joint angles, and joint moments.
    Mapaisansin P; Suriyaamarit D; Boonyong S
    Gait Posture; 2020 Feb; 76():14-21. PubMed ID: 31707306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bipedal model with holonomic constraints for the decoupled optimal controller design of the biomechanical sit-to-stand maneuver.
    Mughal A; Iqbal K
    J Biomech Eng; 2010 Apr; 132(4):041010. PubMed ID: 20387973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the lower extremity joint motions on the total body motion in sit-to-stand movement.
    Yu B; Holly-Crichlow N; Brichta P; Reeves GR; Zablotny CM; Nawoczenski DA
    Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):449-55. PubMed ID: 10771124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sit-to-stand movement analysis in obese subjects.
    Galli M; Crivellini M; Sibella F; Montesano A; Bertocco P; Parisio C
    Int J Obes Relat Metab Disord; 2000 Nov; 24(11):1488-92. PubMed ID: 11126346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constrained Dynamic Optimization of Sit-to-Stand Motion Driven by Bézier Curves.
    Norman-Gerum V; McPhee J
    J Biomech Eng; 2018 Dec; 140(12):. PubMed ID: 30458529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of sit-to-stand movement in normal and obese subjects.
    Sibella F; Galli M; Romei M; Montesano A; Crivellini M
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):745-50. PubMed ID: 12957561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive simulation of sit-to-stand based on reflexive-controllers.
    Muñoz D; De Marchis C; Gizzi L; Severini G
    PLoS One; 2022; 17(12):e0279300. PubMed ID: 36584117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sit-to-stand movement changes in preschool-aged children with spastic diplegia following one neurodevelopmental treatment session--a pilot study.
    Yonetsu R; Iwata A; Surya J; Unase K; Shimizu J
    Disabil Rehabil; 2015; 37(18):1643-50. PubMed ID: 25327772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body coordination during sit-to-stand in blind and sighted female children.
    Aylar MF; Dionisio VC; Jafarnezhadgero A; Parikhani AZ
    J Biomech; 2020 May; 104():109708. PubMed ID: 32173035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-joint human posture control model with realistic neural delays.
    Li Y; Levine WS; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):738-48. PubMed ID: 22692939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving stand-to-sit maneuver for individuals with spinal cord injury.
    Chang SR; Nandor MJ; Kobetic R; Foglyano KM; Quinn RD; Triolo RJ
    J Neuroeng Rehabil; 2016 Mar; 13():27. PubMed ID: 26979386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redistribution of joint moments and dynamic balance control during sit to stand task in persons with Parkinson's disease.
    Skinner JW; Lee HK; Hass CJ
    Parkinsonism Relat Disord; 2021 Sep; 90():21-22. PubMed ID: 34343874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.