These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34383958)

  • 1. Exoskeleton gait training to improve lower urinary tract function in people with motor-complete spinal cord injury: A randomized pilot trial.
    Williams AMM; Deegan E; Walter M; Stothers L; Lam T
    J Rehabil Med; 2021 Aug; 53(8):jrm00222. PubMed ID: 34383958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
    Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T
    J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report.
    Chisholm AE; Alamro RA; Williams AM; Lam T
    J Neuroeng Rehabil; 2017 Apr; 14(1):27. PubMed ID: 28399877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.
    Xiang XN; Zong HY; Ou Y; Yu X; Cheng H; Du CP; He HC
    J Neuroeng Rehabil; 2021 May; 18(1):86. PubMed ID: 34030720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
    Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosing overground robotic gait training after spinal cord injury: a randomized clinical trial protocol.
    Suhalka A; da Silva Areas FZ; Meza F; Ochoa C; Driver S; Sikka S; Hamilton R; Goh HT; Callender L; Bennett M; Shih HT; Swank C
    Trials; 2024 Oct; 25(1):690. PubMed ID: 39425122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highest ambulatory speed using Lokomat gait training for individuals with a motor-complete spinal cord injury: a clinical pilot study.
    van Silfhout L; Váňa Z; Pĕtioký J; Edwards MJR; Bartels RHMA; van de Meent H; Hosman AJF
    Acta Neurochir (Wien); 2020 Apr; 162(4):951-956. PubMed ID: 31873795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury.
    Wu CH; Mao HF; Hu JS; Wang TY; Tsai YJ; Hsu WL
    J Neuroeng Rehabil; 2018 Mar; 15(1):14. PubMed ID: 29506530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study.
    Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions.
    Baunsgaard CB; Nissen UV; Brust AK; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Penalva JB; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    J Rehabil Med; 2018 Sep; 50(9):806-813. PubMed ID: 30183055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The utilization of an overground robotic exoskeleton for gait training during inpatient rehabilitation-single-center retrospective findings.
    Swank C; Trammell M; Bennett M; Ochoa C; Callender L; Sikka S; Driver S
    Int J Rehabil Res; 2020 Sep; 43(3):206-213. PubMed ID: 32282573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 19. Foundational ingredients of robotic gait training for people with incomplete spinal cord injury during inpatient rehabilitation (FIRST): A randomized controlled trial protocol.
    Swank C; Holden A; McDonald L; Driver S; Callender L; Bennett M; Sikka S
    PLoS One; 2022; 17(5):e0267013. PubMed ID: 35536844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity.
    Khan AS; Livingstone DC; Hurd CL; Duchcherer J; Misiaszek JE; Gorassini MA; Manns PJ; Yang JF
    J Neuroeng Rehabil; 2019 Nov; 16(1):145. PubMed ID: 31752911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.