These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34384019)

  • 21. Programmed loading and rapid purification of engineered bacterial microcompartment shells.
    Hagen A; Sutter M; Sloan N; Kerfeld CA
    Nat Commun; 2018 Jul; 9(1):2881. PubMed ID: 30038362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome.
    Wheatley NM; Sundberg CD; Gidaniyan SD; Cascio D; Yeates TO
    J Biol Chem; 2014 Mar; 289(11):7973-81. PubMed ID: 24459150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the Internal pH and Permeability of a Carboxysome Shell.
    Huang J; Jiang Q; Yang M; Dykes GF; Weetman SL; Xin W; He HL; Liu LN
    Biomacromolecules; 2022 Oct; 23(10):4339-4348. PubMed ID: 36054822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanolamine bacterial microcompartments: from structure, function studies to bioengineering applications.
    Pokhrel A; Kang SY; Schmidt-Dannert C
    Curr Opin Microbiol; 2021 Aug; 62():28-37. PubMed ID: 34034083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly, function and evolution of cyanobacterial carboxysomes.
    Kerfeld CA; Melnicki MR
    Curr Opin Plant Biol; 2016 Jun; 31():66-75. PubMed ID: 27060669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ.
    Sutter M; Roberts EW; Gonzalez RC; Bates C; Dawoud S; Landry K; Cannon GC; Heinhorst S; Kerfeld CA
    Sci Rep; 2015 Nov; 5():16243. PubMed ID: 26538283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano- to Microscale.
    Ferlez BH; Kirst H; Greber BJ; Nogales E; Sutter M; Kerfeld CA
    Adv Mater; 2023 Jun; 35(23):e2212065. PubMed ID: 36932732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial microcompartment organelles: protein shell structure and evolution.
    Yeates TO; Crowley CS; Tanaka S
    Annu Rev Biophys; 2010; 39():185-205. PubMed ID: 20192762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionalization of bacterial microcompartment shell interior with cysteine containing peptides enhances the iron and cobalt loading capacity.
    Kalnins G; Bertins M; Viksna A; Tars K
    Biometals; 2024 Feb; 37(1):267-274. PubMed ID: 37728832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A designed bacterial microcompartment shell with tunable composition and precision cargo loading.
    Ferlez B; Sutter M; Kerfeld CA
    Metab Eng; 2019 Jul; 54():286-291. PubMed ID: 31075444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of pentameric shell protein CsoS4B of Halothiobacillus neapolitanus α-carboxysome.
    Zhao YY; Jiang YL; Chen Y; Zhou CZ; Li Q
    Biochem Biophys Res Commun; 2019 Jul; 515(3):510-515. PubMed ID: 31171360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation.
    Oltrogge LM; Chaijarasphong T; Chen AW; Bolin ER; Marqusee S; Savage DF
    Nat Struct Mol Biol; 2020 Mar; 27(3):281-287. PubMed ID: 32123388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and assembly of cargo Rubisco in two native α-carboxysomes.
    Ni T; Sun Y; Burn W; Al-Hazeem MMJ; Zhu Y; Yu X; Liu LN; Zhang P
    Nat Commun; 2022 Jul; 13(1):4299. PubMed ID: 35879301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The protein shells of bacterial microcompartment organelles.
    Yeates TO; Thompson MC; Bobik TA
    Curr Opin Struct Biol; 2011 Apr; 21(2):223-31. PubMed ID: 21315581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symmetry breaking and structural polymorphism in a bacterial microcompartment shell protein for choline utilization.
    Ochoa JM; Nguyen VN; Nie M; Sawaya MR; Bobik TA; Yeates TO
    Protein Sci; 2020 Nov; 29(11):2201-2212. PubMed ID: 32885887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum.
    Baumgart M; Huber I; Abdollahzadeh I; Gensch T; Frunzke J
    J Biotechnol; 2017 Sep; 258():126-135. PubMed ID: 28359868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome.
    Tsai Y; Sawaya MR; Cannon GC; Cai F; Williams EB; Heinhorst S; Kerfeld CA; Yeates TO
    PLoS Biol; 2007 Jun; 5(6):e144. PubMed ID: 17518518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial microcompartments: tiny organelles with big potential.
    Kennedy NW; Mills CE; Nichols TM; Abrahamson CH; Tullman-Ercek D
    Curr Opin Microbiol; 2021 Oct; 63():36-42. PubMed ID: 34126434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB.
    Kennedy NW; Mills CE; Abrahamson CH; Archer AG; Shirman S; Jewett MC; Mangan NM; Tullman-Ercek D
    J Bacteriol; 2022 Sep; 204(9):e0057621. PubMed ID: 35575582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-cargo encapsulation peptides bind between tessellating tiles of the bacterial microcompartment shell.
    Gu S; Bradley-Clarke J; Rose RS; Warren MJ; Pickersgill RW
    J Biol Chem; 2024 Jun; 300(6):107357. PubMed ID: 38735476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.