These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 34384021)

  • 1. Unexpected Low Mechanical Stability of Titin I27 Domain at Physiologically Relevant Temperature.
    Yu M; Lu JH; Le S; Yan J
    J Phys Chem Lett; 2021 Aug; 12(33):7914-7920. PubMed ID: 34384021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains.
    Yuan G; Le S; Yao M; Qian H; Zhou X; Yan J; Chen H
    Angew Chem Int Ed Engl; 2017 May; 56(20):5490-5493. PubMed ID: 28394039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of chloramphenicol with titin I27 probed using single-molecule force spectroscopy.
    Yadav J; Kumar Y; Singaraju GS; Patil S
    J Biol Phys; 2021 Jun; 47(2):191-204. PubMed ID: 34075502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.
    DuVall MM; Gifford JL; Amrein M; Herzog W
    Eur Biophys J; 2013 Apr; 42(4):301-7. PubMed ID: 23224300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity.
    Improta S; Politou AS; Pastore A
    Structure; 1996 Mar; 4(3):323-37. PubMed ID: 8805538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hidden complexity in the mechanical properties of titin.
    Williams PM; Fowler SB; Best RB; Toca-Herrera JL; Scott KA; Steward A; Clarke J
    Nature; 2003 Mar; 422(6930):446-9. PubMed ID: 12660787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding of titin domains studied by molecular dynamics simulations.
    Gao M; Lu H; Schulten K
    J Muscle Res Cell Motil; 2002; 23(5-6):513-21. PubMed ID: 12785101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titin-Based Nanoparticle Tension Sensors Map High-Magnitude Integrin Forces within Focal Adhesions.
    Galior K; Liu Y; Yehl K; Vivek S; Salaita K
    Nano Lett; 2016 Jan; 16(1):341-8. PubMed ID: 26598972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule force-unfolding of titin I27 reveals a correlation between the size of the surrounding anions and its mechanical stability.
    Muddassir M; Manna B; Singh P; Singh S; Kumar R; Ghosh A; Sharma D
    Chem Commun (Camb); 2018 Aug; 54(69):9635-9638. PubMed ID: 30095848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.
    Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J
    J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural stabilities of different regions of the titin I27 domain contribute differently to unfolding upon mitochondrial protein import.
    Oguro T; Yagawa K; Momose T; Sato T; Yamano K; Endo T
    J Mol Biol; 2009 Jan; 385(3):811-9. PubMed ID: 19013176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation.
    Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J
    J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of temperature on mechanical resistance of the native and intermediate states of I27.
    Taniguchi Y; Brockwell DJ; Kawakami M
    Biophys J; 2008 Dec; 95(11):5296-305. PubMed ID: 18775959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigation of the effect of thermal perturbation on the mechanical unfolding of titin I27.
    Bung N; Priyakumar UD
    J Mol Model; 2012 Jun; 18(6):2823-9. PubMed ID: 22119788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Unfolding of Titin I27 Single and Bi Domain with High-Pressure NMR Spectroscopy.
    Herrada I; Barthe P; Vanheusden M; DeGuillen K; Mammri L; Delbecq S; Rico F; Roumestand C
    Biophys J; 2018 Jul; 115(2):341-352. PubMed ID: 30021109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations.
    Schappacher-Tilp G; Leonard T; Desch G; Herzog W
    PLoS Comput Biol; 2016 Jun; 12(6):e1004904. PubMed ID: 27276390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy.
    Li H; Fernandez JM
    J Mol Biol; 2003 Nov; 334(1):75-86. PubMed ID: 14596801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.