These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34384052)

  • 1. Classification of error-related potentials evoked during stroke rehabilitation training.
    Kumar A; Pirogova E; Mahmoud SS; Fang Q
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34384052
    [No Abstract]   [Full Text] [Related]  

  • 2. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network.
    Usama N; Niazi IK; Dremstrup K; Jochumsen M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional source separation algorithm to enhance error-related potentials monitoring in noninvasive brain-computer interface.
    Ferracuti F; Casadei V; Marcantoni I; Iarlori S; Burattini L; Monteriù A; Porcaro C
    Comput Methods Programs Biomed; 2020 Jul; 191():105419. PubMed ID: 32151908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invariability of EEG error-related potentials during continuous feedback protocols elicited by erroneous actions at predicted or unpredicted states.
    Iwane F; Iturrate I; Chavarriaga R; Millán JDR
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33882461
    [No Abstract]   [Full Text] [Related]  

  • 6. Error-Related Negativity-Based Robot-Assisted Stroke Rehabilitation System: Design and Proof-of-Concept.
    Kumar A; Gao L; Li J; Ma J; Fu J; Gu X; Mahmoud SS; Fang Q
    Front Neurorobot; 2022; 16():837119. PubMed ID: 35548781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online asynchronous decoding of error-related potentials during the continuous control of a robot.
    Lopes-Dias C; Sburlea AI; Müller-Putz GR
    Sci Rep; 2019 Nov; 9(1):17596. PubMed ID: 31772232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep neural network and transfer learning combined method for cross-task classification of error-related potentials.
    Ren G; Kumar A; Mahmoud SS; Fang Q
    Front Hum Neurosci; 2024; 18():1394107. PubMed ID: 38933146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the Classification of Error-Related Potentials using Riemannian Geometry.
    Tang Y; Zhang JJ; Corballis PM; Hallum LE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5905-5908. PubMed ID: 34892463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation.
    Usama N; Kunz Leerskov K; Niazi IK; Dremstrup K; Jochumsen M
    Med Biol Eng Comput; 2020 Nov; 58(11):2699-2710. PubMed ID: 32862336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single trial detection of error-related potentials in brain-machine interfaces: a survey and comparison of methods.
    Yasemin M; Cruz A; Nunes UJ; Pires G
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36595316
    [No Abstract]   [Full Text] [Related]  

  • 13. Detection of tactile-based error-related potentials (ErrPs) in human-robot interaction.
    Kim SK; Kirchner EA
    Front Neurorobot; 2023; 17():1297990. PubMed ID: 38162893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Masked and unmasked error-related potentials during continuous control and feedback.
    Lopes Dias C; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2018 Jun; 15(3):036031. PubMed ID: 29557346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Handling Few Training Data: Classifier Transfer Between Different Types of Error-Related Potentials.
    Kim SK; Kirchner EA
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):320-32. PubMed ID: 26701866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Trial Classification of Error-Related Potentials in People with Motor Disabilities: A Study in Cerebral Palsy, Stroke, and Amputees.
    Usama N; Niazi IK; Dremstrup K; Jochumsen M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards error categorisation in BCI: single-trial EEG classification between different errors.
    Wirth C; Dockree PM; Harty S; Lacey E; Arvaneh M
    J Neural Eng; 2019 Dec; 17(1):016008. PubMed ID: 31683267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online asynchronous detection of error-related potentials in participants with a spinal cord injury using a generic classifier.
    Lopes-Dias C; Sburlea AI; Breitegger K; Wyss D; Drescher H; Wildburger R; Müller-Putz GR
    J Neural Eng; 2021 Mar; 18(4):046022. PubMed ID: 33779576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error-Related Neural Responses Recorded by Electroencephalography During Post-stroke Rehabilitation Movements.
    Kumar A; Fang Q; Fu J; Pirogova E; Gu X
    Front Neurorobot; 2019; 13():107. PubMed ID: 31920616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generic error-related potential classifier based on simulated subjects.
    Xavier Fidêncio A; Klaes C; Iossifidis I
    Front Hum Neurosci; 2024; 18():1390714. PubMed ID: 39086374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.