These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34384052)
41. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response. Mattia D; Pichiorri F; Colamarino E; Masciullo M; Morone G; Toppi J; Pisotta I; Tamburella F; Lorusso M; Paolucci S; Puopolo M; Cincotti F; Molinari M BMC Neurol; 2020 Jun; 20(1):254. PubMed ID: 32593293 [TBL] [Abstract][Full Text] [Related]
42. Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering. Cecotti H; Eckstein MP; Giesbrecht B IEEE Trans Neural Netw Learn Syst; 2014 Nov; 25(11):2030-42. PubMed ID: 25330426 [TBL] [Abstract][Full Text] [Related]
43. [Classification algorithms of error-related potentials in brain-computer interface]. Sun J; Jung TP; Xiao X; Meng J; Xu M; Ming D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):463-472. PubMed ID: 34180191 [TBL] [Abstract][Full Text] [Related]
44. Denoising Algorithm for Event-Related Desynchronization-Based Motor Intention Recognition in Robot-assisted Stroke Rehabilitation Training with Brain-Machine Interaction. Jia T; Liu K; Qian C; Li C; Ji L J Neurosci Methods; 2020 Dec; 346():108909. PubMed ID: 32810473 [TBL] [Abstract][Full Text] [Related]
45. Improving EEG-based error detection using relative peak features. Ashley AL; Arvaneh M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():272-275. PubMed ID: 33017981 [TBL] [Abstract][Full Text] [Related]
47. Yes or no? A study of ErrPs in the "guess what I am thinking" paradigm with stimuli of different visual content. Berkmush-Antipova A; Syrov N; Yakovlev L; Miroshnikov A; Golovanov F; Shusharina N; Kaplan A Front Psychol; 2024; 15():1394496. PubMed ID: 39114591 [TBL] [Abstract][Full Text] [Related]
48. Motor Imagery based Brain Computer Interface Paradigm for Upper Limb Stroke Rehabilitation. Petersen J; Iversen HK; Puthusserypady S Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1960-1963. PubMed ID: 30440782 [TBL] [Abstract][Full Text] [Related]
49. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Khan MA; Das R; Iversen HK; Puthusserypady S Comput Biol Med; 2020 Aug; 123():103843. PubMed ID: 32768038 [TBL] [Abstract][Full Text] [Related]
50. Errare machinale est: the use of error-related potentials in brain-machine interfaces. Chavarriaga R; Sobolewski A; Millán Jdel R Front Neurosci; 2014; 8():208. PubMed ID: 25100937 [TBL] [Abstract][Full Text] [Related]
51. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056 [TBL] [Abstract][Full Text] [Related]
52. Double ErrP Detection for Automatic Error Correction in an ERP-Based BCI Speller. Cruz A; Pires G; Nunes UJ IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):26-36. PubMed ID: 28945598 [TBL] [Abstract][Full Text] [Related]
53. Invariance and variability in interaction error-related potentials and their consequences for classification. Abu-Alqumsan M; Kapeller C; Hintermüller C; Guger C; Peer A J Neural Eng; 2017 Dec; 14(6):066015. PubMed ID: 28776500 [TBL] [Abstract][Full Text] [Related]
54. Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient. Resquin F; Ibañez J; Gonzalez-Vargas J; Brunetti F; Dimbwadyo I; Alves S; Carrasco L; Torres L; Pons JL Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6381-6384. PubMed ID: 28269708 [TBL] [Abstract][Full Text] [Related]
55. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Ang KK; Guan C; Phua KS; Wang C; Zhao L; Teo WP; Chen C; Ng YS; Chew E Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S79-87. PubMed ID: 25721551 [TBL] [Abstract][Full Text] [Related]
56. On Error-Related Potentials During Sensorimotor-Based Brain-Computer Interface: Explorations With a Pseudo-Online Brain-Controlled Speller. Bevilacqua M; Perdikis S; Millan JDR IEEE Open J Eng Med Biol; 2020; 1():17-22. PubMed ID: 35402943 [No Abstract] [Full Text] [Related]
57. CNN-based classification of fNIRS signals in motor imagery BCI system. Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480 [No Abstract] [Full Text] [Related]
58. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Brauchle D; Vukelić M; Bauer R; Gharabaghi A Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168 [TBL] [Abstract][Full Text] [Related]
59. Single-Trial EEG Classification of Similar Errors. Wirth C; Lacey E; Dockree P; Arvaneh M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1919-1922. PubMed ID: 30440773 [TBL] [Abstract][Full Text] [Related]
60. CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces. Kant P; Laskar SH; Hazarika J; Mahamune R J Neurosci Methods; 2020 Nov; 345():108886. PubMed ID: 32730917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]