These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34384067)

  • 1. A computational model of insect campaniform sensilla predicts encoding of forces during walking.
    Szczecinski NS; Dallmann CJ; Quinn RD; Zill SN
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34384067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli.
    Zill SN; Dallmann CJ; S Szczecinski N; Büschges A; Schmitz J
    J Neurophysiol; 2021 Jul; 126(1):227-248. PubMed ID: 34107221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
    Zill SN; Neff D; Chaudhry S; Exter A; Schmitz J; Büschges A
    Arthropod Struct Dev; 2017 Jul; 46(4):564-578. PubMed ID: 28552666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps.
    Zill SN; Chaudhry S; Büschges A; Schmitz J
    Arthropod Struct Dev; 2013 Nov; 42(6):455-467. PubMed ID: 24126203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies.
    Harris CM; Szczecinski NS; Büschges A; Zill SN
    J Neurophysiol; 2022 Oct; 128(4):790-807. PubMed ID: 36043841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion.
    Ridgel AL; Frazier SF; DiCaprio RA; Zill SN
    J Comp Physiol A; 2000 Apr; 186(4):359-74. PubMed ID: 10798724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
    Zill SN; Büschges A; Schmitz J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):851-67. PubMed ID: 21544617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect.
    Haberkorn A; Gruhn M; Zill SN; Büschges A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):253-270. PubMed ID: 30976919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A; 2001 Dec; 187(10):769-84. PubMed ID: 11800034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force encoding in stick insect legs delineates a reference frame for motor control.
    Zill SN; Schmitz J; Chaudhry S; Büschges A
    J Neurophysiol; 2012 Sep; 108(5):1453-72. PubMed ID: 22673329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
    Zill SN; Dallmann CJ; Büschges A; Chaudhry S; Schmitz J
    J Neurophysiol; 2018 Oct; 120(4):1807-1823. PubMed ID: 30020837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradients in mechanotransduction of force and body weight in insects.
    Harris CM; Dinges GF; Haberkorn A; Gebehart C; Büschges A; Zill SN
    Arthropod Struct Dev; 2020 Sep; 58():100970. PubMed ID: 32702647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive force feedback in development of substrate grip in the stick insect tarsus.
    Zill SN; Chaudhry S; Exter A; Büschges A; Schmitz J
    Arthropod Struct Dev; 2014 Sep; 43(5):441-55. PubMed ID: 24951882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Mar; 190(3):201-15. PubMed ID: 14727134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-embryonic development of cuticular caps of campaniform sensilla of the cockroach leg: potential implications in scaling force detection.
    Ridgel AL; Faith Frazier S; Zill SN
    Arthropod Struct Dev; 2003 Oct; 32(2-3):167-73. PubMed ID: 18089002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive load feedback robustly signals force dynamics in robotic model of
    Zyhowski WP; Zill SN; Szczecinski NS
    Front Neurorobot; 2023; 17():1125171. PubMed ID: 36776993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches.
    Ridgel AL; Frazier SF; Zill SN
    J Comp Physiol A; 2001 Jun; 187(5):405-20. PubMed ID: 11529484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A load-based mechanism for inter-leg coordination in insects.
    Dallmann CJ; Hoinville T; Dürr V; Schmitz J
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29187626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity and directional sensitivity of leg campaniform sensilla in a stick insect.
    Delcomyn F
    J Comp Physiol A; 1991 Jan; 168(1):113-9. PubMed ID: 2033563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force feedback reinforces muscle synergies in insect legs.
    Zill SN; Chaudhry S; Büschges A; Schmitz J
    Arthropod Struct Dev; 2015 Nov; 44(6 Pt A):541-53. PubMed ID: 26193626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.