These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 34384179)
21. Development of phosphorus recovery reactor for enlargement of struvite crystals using seawater as the magnesium source. Wongphudphad P; Kemacheevakul P Water Sci Technol; 2019 Apr; 79(7):1376-1386. PubMed ID: 31123237 [TBL] [Abstract][Full Text] [Related]
22. Economic Model Predictive Control for optimal struvite recovery. Nair AM; Haugen FA; Ratnaweera H J Environ Manage; 2021 Feb; 280():111830. PubMed ID: 33360554 [TBL] [Abstract][Full Text] [Related]
23. An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings. Ghosh S; Lobanov S; Lo VK Environ Sci Pollut Res Int; 2019 Jul; 26(19):19063-19077. PubMed ID: 31102218 [TBL] [Abstract][Full Text] [Related]
24. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Rahaman MS; Mavinic DS; Meikleham A; Ellis N Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559 [TBL] [Abstract][Full Text] [Related]
25. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation. Jordaan EM; Ackerman J; Cicek N Water Sci Technol; 2010; 61(12):3228-34. PubMed ID: 20555221 [TBL] [Abstract][Full Text] [Related]
26. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. Sniatala B; Kurniawan TA; Sobotka D; Makinia J; Othman MHD Sci Total Environ; 2023 Jan; 856(Pt 2):159283. PubMed ID: 36208738 [TBL] [Abstract][Full Text] [Related]
27. Dissolving the high-cost with acidity: A happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture. Ye X; Chen M; Wang W; Shen J; Wu J; Huang W; Xiao L; Lin X; Ye ZL; Chen S Water Res; 2021 Jan; 188():116521. PubMed ID: 33099265 [TBL] [Abstract][Full Text] [Related]
28. Recovery of phosphorous from swine wastewater through crystallization. Suzuki K; Tanaka Y; Kuroda K; Hanajima D; Fukumoto Y Bioresour Technol; 2005 Sep; 96(14):1544-50. PubMed ID: 15978986 [TBL] [Abstract][Full Text] [Related]
29. Model-driven spatial evaluation of nutrient recovery from livestock leachate for struvite production. Martín-Hernández E; Ruiz-Mercado GJ; Martín M J Environ Manage; 2020 Oct; 271():110967. PubMed ID: 32579523 [TBL] [Abstract][Full Text] [Related]
30. Circular economy approach: Nutrient recovery and economical struvite production from wastewater sources by using modified biochars. Zin MMT; Hussain M; Kim DJ; Yang JE; Choi YJ; Park YK Chemosphere; 2024 Aug; 362():142589. PubMed ID: 38866334 [TBL] [Abstract][Full Text] [Related]
31. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. Shaddel S; Grini T; Ucar S; Azrague K; Andreassen JP; Østerhus SW Water Res; 2020 Apr; 173():115572. PubMed ID: 32062222 [TBL] [Abstract][Full Text] [Related]
32. Effects of organic matter on crystallization of struvite in biologically treated swine wastewater. Capdevielle A; Sýkorová E; Béline F; Daumer ML Environ Technol; 2016; 37(7):880-92. PubMed ID: 26495935 [TBL] [Abstract][Full Text] [Related]
33. Struvite pellet crystallization in a high-strength nitrogen and phosphorus stream. Li Y; Liu M; Yuan Z; Zou J Water Sci Technol; 2013; 68(6):1300-5. PubMed ID: 24056427 [TBL] [Abstract][Full Text] [Related]
34. [Effect of pilot UASB-SFSBR-MAP process for the large scale swine wastewater treatment]. Wang L; Chen CJ; Chen YX; Wu WX Huan Jing Ke Xue; 2013 Mar; 34(3):979-85. PubMed ID: 23745404 [TBL] [Abstract][Full Text] [Related]
35. Comparative study of heavy metal residues in struvite products recovered from swine wastewater using fluidised bed and stirred reactors. Chu D; Ye ZL; Chen S; Xiong X Water Sci Technol; 2018 Nov; 78(8):1642-1651. PubMed ID: 30500788 [TBL] [Abstract][Full Text] [Related]
36. Phosphate separation and recovery from wastewater by novel electrodialysis. Zhang Y; Desmidt E; Van Looveren A; Pinoy L; Meesschaert B; Van der Bruggen B Environ Sci Technol; 2013 Jun; 47(11):5888-95. PubMed ID: 23651001 [TBL] [Abstract][Full Text] [Related]
37. Struvite precipitation potential for nutrient recovery from anaerobically treated wastes. Miles A; Ellis TG Water Sci Technol; 2001; 43(11):259-66. PubMed ID: 11443971 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous recovery of phosphorus and nitrogen from sewage sludge ash and food wastewater as struvite by Mg-biochar. Thant Zin MM; Kim DJ J Hazard Mater; 2021 Feb; 403():123704. PubMed ID: 33264890 [TBL] [Abstract][Full Text] [Related]
39. Wastewater in India: An untapped and under-tapped resource for nutrient recovery towards attaining a sustainable circular economy. Gowd SC; Ramakrishna S; Rajendran K Chemosphere; 2022 Mar; 291(Pt 1):132753. PubMed ID: 34780737 [TBL] [Abstract][Full Text] [Related]
40. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Ichihashi O; Hirooka K Bioresour Technol; 2012 Jun; 114():303-7. PubMed ID: 22445264 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]