These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34384204)

  • 1. Automatic Pectoral Muscle Removal and Microcalcification Localization in Digital Mammograms.
    Gómez KAH; Echeverry-Correa JD; Gutiérrez ÁÁO
    Healthc Inform Res; 2021 Jul; 27(3):222-230. PubMed ID: 34384204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of mammograms ROI's and reduction of false-positive.
    Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA
    Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Breast Border Extraction and Contrast Enhancement Technique with Digital Mammogram Images for Improved Detection of Breast Cancer.
    Hazarika M; Mahanta LB
    Asian Pac J Cancer Prev; 2018 Aug; 19(8):2141-2148. PubMed ID: 30139217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Detection of Pectoral Muscle Region for Computer-Aided Diagnosis Using MIAS Mammograms.
    Yoon WB; Oh JE; Chae EY; Kim HH; Lee SY; Kim KG
    Biomed Res Int; 2016; 2016():5967580. PubMed ID: 27847817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and Segmentation of Pectoral Muscle on MLO-View Mammogram Using Enhancement Filter.
    Vikhe PS; Thool VR
    J Med Syst; 2017 Oct; 41(12):190. PubMed ID: 29071592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast microcalcifications detection based on fusing features with DTCWT.
    Wang Z; Xin J; Zhang Q; Gao S; Ma C; Ren J; Zhang H; Qian W; Zhu W; Zhang X; Liu J
    J Xray Sci Technol; 2020; 28(2):197-218. PubMed ID: 31985483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network.
    Rehman KU; Li J; Pei Y; Yasin A; Ali S; Mahmood T
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer Aided Detection of Clustered Microcalcification: A Survey.
    Kumar MNA; Kumar MNA; Sheshadri HS
    Curr Med Imaging Rev; 2019; 15(2):132-149. PubMed ID: 31975660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views.
    Taghanaki SA; Liu Y; Miles B; Hamarneh G
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2662-2671. PubMed ID: 28129144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Pectoral Muscle Region Segmentation in Mammograms Using Genetic Algorithm and Morphological Selection.
    Shen R; Yan K; Xiao F; Chang J; Jiang C; Zhou K
    J Digit Imaging; 2018 Oct; 31(5):680-691. PubMed ID: 29582242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer aided detection of clusters of microcalcifications on full field digital mammograms.
    Ge J; Sahiner B; Hadjiiski LM; Chan HP; Wei J; Helvie MA; Zhou C
    Med Phys; 2006 Aug; 33(8):2975-88. PubMed ID: 16964876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital mammography: hybrid four-channel wavelet transform for microcalcification segmentation.
    Qian W; Clarke LP; Song D; Clark RA
    Acad Radiol; 1998 May; 5(5):354-64. PubMed ID: 9597103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local Binary Patterns Descriptor Based on Sparse Curvelet Coefficients for False-Positive Reduction in Mammograms.
    Pawar MM; Talbar SN; Dudhane A
    J Healthc Eng; 2018; 2018():5940436. PubMed ID: 30356422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated breast boundary and pectoral muscle segmentation in mammograms.
    Rampun A; Morrow PJ; Scotney BW; Winder J
    Artif Intell Med; 2017 Jun; 79():28-41. PubMed ID: 28606722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms.
    Mustra M; Grgic M; Rangayyan RM
    Med Biol Eng Comput; 2016 Jul; 54(7):1003-24. PubMed ID: 26546074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree structured wavelet transform segmentation of microcalcifications in digital mammography.
    Qian W; Kallergi M; Clarke LP; Li HD; Venugopal P; Song D; Clark RA
    Med Phys; 1995 Aug; 22(8):1247-54. PubMed ID: 7476710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms.
    Yin K; Yan S; Song C; Zheng B
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.