These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34384580)
1. Measuring semantic similarity of clinical trial outcomes using deep pre-trained language representations. Koroleva A; Kamath S; Paroubek P J Biomed Inform; 2019; 100S():100058. PubMed ID: 34384580 [TBL] [Abstract][Full Text] [Related]
2. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885 [TBL] [Abstract][Full Text] [Related]
3. Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts. Jiang S; Wu W; Tomita N; Ganoe C; Hassanpour S J Biomed Inform; 2020 Nov; 111():103581. PubMed ID: 33010425 [TBL] [Abstract][Full Text] [Related]
4. Drug knowledge discovery via multi-task learning and pre-trained models. Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238 [TBL] [Abstract][Full Text] [Related]
5. Identification of Semantically Similar Sentences in Clinical Notes: Iterative Intermediate Training Using Multi-Task Learning. Mahajan D; Poddar A; Liang JJ; Lin YT; Prager JM; Suryanarayanan P; Raghavan P; Tsou CH JMIR Med Inform; 2020 Nov; 8(11):e22508. PubMed ID: 33245284 [TBL] [Abstract][Full Text] [Related]
6. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
7. BioBERT and Similar Approaches for Relation Extraction. Bhasuran B Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867 [TBL] [Abstract][Full Text] [Related]
8. Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis. Ormerod M; Martínez Del Rincón J; Devereux B JMIR Med Inform; 2021 May; 9(5):e23099. PubMed ID: 34037527 [TBL] [Abstract][Full Text] [Related]
9. The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview. Wang Y; Fu S; Shen F; Henry S; Uzuner O; Liu H JMIR Med Inform; 2020 Nov; 8(11):e23375. PubMed ID: 33245291 [TBL] [Abstract][Full Text] [Related]
10. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
11. Benchmarking Effectiveness and Efficiency of Deep Learning Models for Semantic Textual Similarity in the Clinical Domain: Validation Study. Chen Q; Rankine A; Peng Y; Aghaarabi E; Lu Z JMIR Med Inform; 2021 Dec; 9(12):e27386. PubMed ID: 34967748 [TBL] [Abstract][Full Text] [Related]
12. Deep learning to refine the identification of high-quality clinical research articles from the biomedical literature: Performance evaluation. Lokker C; Bagheri E; Abdelkader W; Parrish R; Afzal M; Navarro T; Cotoi C; Germini F; Linkins L; Haynes RB; Chu L; Iorio A J Biomed Inform; 2023 Jun; 142():104384. PubMed ID: 37164244 [TBL] [Abstract][Full Text] [Related]
13. An Evaluation of Pretrained BERT Models for Comparing Semantic Similarity Across Unstructured Clinical Trial Texts. Patricoski J; Kreimeyer K; Balan A; Hardart K; Tao J; ; Anagnostou V; Botsis T Stud Health Technol Inform; 2022 Jan; 289():18-21. PubMed ID: 35062081 [TBL] [Abstract][Full Text] [Related]
14. Measurement of Semantic Textual Similarity in Clinical Texts: Comparison of Transformer-Based Models. Yang X; He X; Zhang H; Ma Y; Bian J; Wu Y JMIR Med Inform; 2020 Nov; 8(11):e19735. PubMed ID: 33226350 [TBL] [Abstract][Full Text] [Related]
15. BERT-based Ranking for Biomedical Entity Normalization. Ji Z; Wei Q; Xu H AMIA Jt Summits Transl Sci Proc; 2020; 2020():269-277. PubMed ID: 32477646 [TBL] [Abstract][Full Text] [Related]
16. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology. Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713 [TBL] [Abstract][Full Text] [Related]
17. Identifying the Question Similarity of Regulatory Documents in the Pharmaceutical Industry by Using the Recognizing Question Entailment System: Evaluation Study. Saraswat N; Li C; Jiang M JMIR AI; 2023 Sep; 2():e43483. PubMed ID: 38875534 [TBL] [Abstract][Full Text] [Related]
18. Discovering Thematically Coherent Biomedical Documents Using Contextualized Bidirectional Encoder Representations from Transformers-Based Clustering. Davagdorj K; Wang L; Li M; Pham VH; Ryu KH; Theera-Umpon N Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627429 [TBL] [Abstract][Full Text] [Related]
19. Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT. Mutinda FW; Yada S; Wakamiya S; Aramaki E Methods Inf Med; 2021 Jun; 60(S 01):e56-e64. PubMed ID: 34237783 [TBL] [Abstract][Full Text] [Related]
20. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records. Chen Q; Du J; Kim S; Wilbur WJ; Lu Z BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]